Use the figure at the right.

1. Name the vertex of $\angle 4$.

SOLUTION:
U
ANSWER:
U
2. Name the sides of $\angle 3$.

SOLUTION:
$\overrightarrow{X W}, \overrightarrow{X U}$
ANSWER:
$\overrightarrow{X W}, \overrightarrow{X U}$
3. What is another name for $\angle 2$?

SOLUTION:
$\angle X Y U, \angle U Y X$
ANSWER:
$\angle X Y U, \angle U Y X$
4. What is another name for $\angle U X Y$?

SOLUTION:
$\angle 1, \angle Y X U$
ANSWER:
$\angle 1, \angle Y X U$

Copy the diagram shown, and extend each ray. Classify each angle as right, acute, or obtuse. Then use a protractor to measure the angle to the nearest degree.

5. $\angle C F D$

SOLUTION:

$\angle \mathrm{CFD}$ is an acute angle. The measure of $\angle \mathrm{CFD}$ is 40 .
ANSWER:
acute; 40
6. $\angle A F D$

SOLUTION:

$\angle \mathrm{AFD}$ is an obtuse angle. The measure of $\angle \mathrm{AFD}$ is 150 .
ANSWER:
obtuse; 150

1-4 Angle Measure

7. $\angle B F C$

SOLUTION:

$\angle \mathrm{BFC}$ is a right angle. The measure of $\angle \mathrm{BFC}$ is 90 .
ANSWER:
right; 90
8. $\angle A F B$

SOLUTION:

$\angle \mathrm{AFB}$ is an acute angle. The measure of $\angle \mathrm{AFB}$ is 25
ANSWER:
acute; 25

ALGEBRA In the figure, $\overrightarrow{K J}$ and $\overrightarrow{K L}$ are opposite rays, $\overrightarrow{K N}$ bisects $\angle L K M$.

9. If $m \angle L K M=7 x-5$ and $m \angle N K M=3 x+9$, find $m \angle L K M$.

SOLUTION:

$m \angle L K M=m \angle L K N+m \angle N K M$. Because of the definition of bisecting rays, $m \angle L K N=m \angle N K M$.

$$
\begin{aligned}
m \angle L K M & =m \angle L K N+m \angle N K M & & \text { Definition of bisecting ray } \\
m \angle L K M & =m \angle N K M+m \angle N K M & & \text { Substitution } \\
m \angle L K M & =2(m \angle N K M) & & \text { Addition. } \\
7 x-5 & =2(3 x+9) & & \text { Substitution. } \\
7 x-5 & =6 x+18 & & \text { Distributive Property } \\
7 x-6 x-5 & =6 x-6 x+18 & & \text { Subtract } 6 x \text { from each side. } \\
x-5 & =18 & & \text { Simplify. } \\
x-5+5 & =18+5 & & \text { Add } 5 \text { to each side. } \\
x & =23 & & \text { Simplify. }
\end{aligned}
$$

To find , $m \angle L K M$ substitute $x=23$ into the equation $m \angle L K M=7 x-5$,.

$$
\begin{aligned}
7 x-5 & =7(23)-5 \\
& =161-5 \\
& =156
\end{aligned}
$$

ANSWER:
156

1-4 Angle Measure

10. If $m \angle N K L=7 x-9$ and $m \angle J K M=x+3$, find $m \angle J K N$.

SOLUTION:

By the Angle Addition Postulate, $m \angle M K J+m \angle N K M+m \angle L K N=180$.
Since $\overrightarrow{K N}$ bisects $\angle L K M, m \angle N K M=m \angle N K L$.
Thus, $m \angle M K J+m \angle L K N+m \angle L K N=180$.

$$
\begin{aligned}
m \angle M K J+m \angle L K N+m \angle L K N & =180 & & \\
x+3+7 x-9+7 x-9 & =180 & & \text { Substitution. } \\
15 x-15 & =180 & & \text { Simplify. } \\
15 x-15+15 & =180+15 & & \text { Add } 15 \text { to each side. } \\
15 x & =195 & & \text { Simplify. } \\
\frac{15 x}{15} & =\frac{195}{15} & & \text { Divide each side by } 15 . \\
x & =13 & & \text { Simplify. }
\end{aligned}
$$

Find an expression for $m \angle J K N$.

$$
\begin{aligned}
m \angle J K N & =m \angle J K M+m \angle N K M \\
& =x+3+7 x-9 \\
& =8 x-6
\end{aligned}
$$

To find $8 x-6$, substitute the value 13 for x.

$$
\begin{aligned}
m \angle J K N & =8(13)-6 \\
& =104-6 \\
& =98
\end{aligned}
$$

ANSWER:
98

1-4 Angle Measure

11. CCSS PRECISION A miter cut is used to build picture frames with corners that meet at right angles. a. José miters the ends of some wood for a picture frame at congruent angles. What is the degree measure of his cut? Explain and classify the angle.
b. What does the joint represent in relation to the angle formed by the two pieces?

SOLUTION:

a. 45 ; When joined together, the angles form a right angle, which measures 90 . If the two angles that form this right angle are congruent, then the measure of each angle is $90 \div 2$ or 45 . The angle of the cut is an acute angle.
b. The joint is the angle bisector of the frame angle.

ANSWER:

a. 45 ; When joined together, the angles form a right angle, which measures 90 . If the two angles that form this right angle are congruent, then the measure of each angle is $90 \div 2$ or 45 . The angle of the cut is an acute angle.
b. The joint is the angle bisector of the frame angle.

For Exercises 12-29, use the figure below.

Name the vertex of each angle.
12. $\angle 4$

SOLUTION:
Q
ANSWER:
Q
13. $\angle 7$

SOLUTION:
P
ANSWER:
P

1-4 Angle Measure

14. $\angle 2$

SOLUTION:
R

ANSWER:
R
15. $\angle 1$

SOLUTION:
M
ANSWER:
M
Name the sides of each angle.
16. $\angle T P Q$

SOLUTION:
$\overrightarrow{P T}, \overrightarrow{P Q}$
ANSWER:
$\overrightarrow{P T}, \overrightarrow{P Q}$
17. $\angle V N M$

SOLUTION:
$\overrightarrow{N V}, \overline{N M}$
ANSWER:
$\overrightarrow{N V}, \overrightarrow{N M}$
18. $\angle 6$

SOLUTION:
$\overline{N M}, \overline{N R}$
ANSWER:
$\overline{N M}, \overline{N R}$
19. $\angle 3$

SOLUTION:
$\overrightarrow{R P}, \overrightarrow{R Q}$
ANSWER:
$\overrightarrow{R P}, \overrightarrow{R Q}$

1-4 Angle Measure

Write another name for each angle.
20. $\angle 9$

SOLUTION:
$\angle M R S, \angle S R M$
ANSWER:
$\angle M R S, \angle S R M$
21. $\angle Q P T$

SOLUTION:
$\angle T P Q$
ANSWER:
$\angle T P Q$
22. $\angle M Q S$

SOLUTION:
$\angle 4, \angle S Q M, \angle M Q R, \angle R Q M, \angle N Q S, \angle S Q N, \angle N Q R, \angle R Q N, \angle P Q R, \angle R Q P, \angle P Q S$, $\angle S Q P$

ANSWER:
$\angle 4, \angle S Q M, \angle M Q R, \angle R Q M, \angle N Q S, \angle S Q N, \angle N Q R, \angle R Q N, \angle P Q R, \angle R Q P, \angle P Q S$, $\angle S Q P$
23. $\angle 5$

SOLUTION:
$\angle T P N, \angle N P T, \angle T P M, \angle M P T$
ANSWER:
$\angle T P N, \angle N P T, \angle T P M, \angle M P T$
24. Name an angle with vertex N that appears obtuse.

SOLUTION:
Sample answer: $\angle V N Q$
ANSWER:
Sample answer: $\angle V N Q$
25. Name an angle with vertex Q that appears acute.

SOLUTION:

$\angle 4$
ANSWER:
$\angle 4$

1-4 Angle Measure

26. Name a point in the interior of $\angle V R Q$.

SOLUTION:
P, T
ANSWER:
P, T
27. Name a point in the exterior of $\angle M R T$.

SOLUTION:
S, Q
ANSWER:
S, Q
28. Name a pair of angles that share exactly one point.

SOLUTION:
Sample answer: $\angle 6$ and $\angle 8$ share the vertex point N.
ANSWER:
Sample answer: $\angle 6, \angle 8$
29. Name a pair of angles that share more than one point.

SOLUTION:

Sample answer: $\angle M P R$ and $\angle P R Q$ share points P and R.
ANSWER:
Sample answer: $\angle M P R, \angle P R Q$

Copy the diagram shown, and extend each ray. Classify each angle as right, acute, or obtuse. Then use a protractor to measure the angle to the nearest degree.
30. $\angle G F K$

SOLUTION:

$\angle G F K$ is a right angle. The measure of $\angle G F K$ is 90 .
ANSWER:
90, right
31. $\angle E F K$

SOLUTION:

E^{*}
$\angle E F K$ is a right angle. The measure of $\angle E F K$ is 90 .
ANSWER:
90, right

1-4 Angle Measure

32. $\angle L F K$

SOLUTION:

$\angle L F K$ is an acute angle. The measure of $\angle L F K$ is 45 .
ANSWER:
45, acute
33. $\angle E F H$

SOLUTION:

E
$\angle E F H$ is an acute angle. The measure of $\angle E F H$ is 45 .
ANSWER:
45, acute

1-4 Angle Measure

34. $\angle G F H$

SOLUTION:

$\angle G F H$ is an obtuse angle. The measure of $\angle G F H$ is 135 .
ANSWER:
135, obtuse
35. $\angle E F L$

SOLUTION:

E^{*}
$\angle E F L$ is an obtuse. The measure of $\angle E F L$ is 135 .
ANSWER:
135, obtuse

1-4 Angle Measure

36. CLOCKS Determine at least three different times during the day when the hands on a clock form each of the following angles. Explain.
a. right angle
b. obtuse angle
c. congruent acute angles

Refer to Page 42.

SOLUTION:

a. Sample answer: 3:00, $6: 16,9: 00$; The angle measures at these times are 90°, which is the measure of a right angle.
b. Sample answer: 4:00, 5:00, 7:00, 8:00; The angle measures at these times are greater than 90 , or obtuse angles.
c. Sample answer: 1:00, 2:06, 11:00; The angle measures at these times are all equal to each other or congruent and less than 90 , or acute angles.

ANSWER:
a. Sample answer: 3:00, 6:16, 9:00; The angle measures at these times are 90°, which is the measure of a right angle.
b. Sample answer: 4:00, 5:00, 7:00, 8:00; The angle measures at these times are greater than 90 , or obtuse angles.
c. Sample answer: 1:00, 2:06, 11:00; The angle measures at these times are all equal to each other or congruent and less than 90 , or acute angles.

ALGEBRA In the figure, $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are opposite rays. $\overrightarrow{B H}$ bisects $\angle E B C$.

37. If $m \angle A B E=2 n+7$ and $m \angle E B F=4 n-13$, find $m \angle A B E$.

SOLUTION:

Since $\angle A B E \cong \angle E B F, m \angle A B E=m \angle E B F$.
So, $2 n+7=4 n-13$.

$$
\begin{aligned}
m \angle A B E & =m \angle E B F & & \\
2 n+7 & =4 n-13 & & \text { Substitution. } \\
2 n-4 n+7 & =4 n-4 n-13 & & \text { Subtract } 4 n \text { from each side. } \\
-2 n+7 & =-13 & & \text { Simplify. } \\
-2 n+7-7 & =-13-7 & & \text { Subtract } 7 \text { from each side. } \\
-2 n & =-20 & & \text { Simplify. } \\
\frac{-2 n}{-2} & =\frac{-20}{-2} & & \text { Divide each side by }-2 . \\
n & =10 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle A B E & =2 n+7 \\
& =2(10)+7 \\
& =27
\end{aligned}
$$

ANSWER:
27

1-4 Angle Measure

38. If $m \angle E B H=6 x+12$ and $m \angle H B C=8 x-10$, find $m \angle E B H$.

SOLUTION:

Since $\overrightarrow{B H}$ bisects $\angle E B C, m \angle E B H=m \angle H B C$.
Then,

$$
\begin{aligned}
m \angle E B H & =m \angle H B C & & \\
6 x+12 & =8 x-10 & & \text { Substitution. } \\
6 x-8 x+12 & =8 x-8 x-10 & & \text { Subtract } 8 x \text { from each side. } \\
-2 x+12 & =-10 & & \text { Simplify. } \\
-2 x+12-12 & =-10-12 & & \text { Subtract12 from each side. } \\
-2 x & =-22 & & \text { Simplify. } \\
\frac{-2 x}{-2} & =\frac{-22}{-2} & & \text { Divide each side by }-2 . \\
x & =11 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle E B H & =6 x+12 \\
& =6(11)+12 \\
& =78
\end{aligned}
$$

ANSWER:
78

1-4 Angle Measure

39. If $m \angle A B F=7 b-24$ and $m \angle A B E=2 b$, find $m \angle E B F$.

SOLUTION:

Since $m \angle A B E=m \angle E B F, \overrightarrow{E B}$ is an angle bisector. So, $m \angle A B E=\frac{1}{2} m \angle A B F$.

Substitute.

$$
\begin{aligned}
m \angle A B E & =\frac{1}{2} m \angle A B F & & \\
2 b & =\frac{1}{2}(7 b-24) & & \text { Substitution. } \\
2(2 b) & =2\left(\frac{1}{2}(7 b-24)\right) & & \times \text { each side by } 2 . \\
4 b & =7 b-24 & & \text { Simplify. } \\
4 b-7 b & =7 b-7 b-24 & & -7 b \text { from each si } \\
-3 b & =-24 & & \text { Simplify. } \\
\frac{-3 b}{-3} & =\frac{-24}{-3} & & \div \text { each side by }- \\
b & =8 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle E B F & =m \angle A B E \\
& =2 b \\
& =2(8) \\
& =16
\end{aligned}
$$

ANSWER:
16

1-4 Angle Measure

40. If $m \angle E B C=31 a-2$ and $m \angle E B H=4 a+45$, find $m \angle H B C$.

SOLUTION:

Since $\overrightarrow{B H}$ is an angle bisector $m \angle H B C=m \angle E B H=\frac{1}{2} m \angle E B C$.
Substitute.

$$
\begin{aligned}
m \angle E B H & =\frac{1}{2} m \angle E B C & & \\
4 a+45 & =\frac{1}{2}(3 a-2) & & \text { Substitution. } \\
2(4 a+45) & =2\left(\frac{1}{2}(31 a-2)\right) & & \times \text { each side by } 2 . \\
8 a+90 & =31 a-2 & & \text { Simplify. } \\
8 a-3 a+90 & =31 a-31 a-2 & & -31 b \text { from each side. } \\
-23 a+90 & =-2 & & \text { Simplify. } \\
-23 a+90-90 & =-2-90 & & \text { Simplify. } \\
\frac{-23 a}{-23} & =\frac{-92}{-23} & & \div \text { each side by }-23 . \\
a & =4 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle E B H & =4 a+45 \\
& =4(4)+45 \\
& =61
\end{aligned}
$$

Since $m \angle H B C=m \angle E B H, m \angle H B C=61$.
ANSWER:
61

1-4 Angle Measure

41. If $m \angle A B F=8 s-6$ and $m \angle A B E=2(s+11)$, find $m \angle E B F$.

SOLUTION:

Since $\angle A B E \cong \angle E B F, m \angle A B E=m \angle E B F$.
So,

$$
\begin{aligned}
m \angle A B F & =m \angle A B E+m \angle E B F & & \text { Definition of bisecting } \\
& =m \angle A B E+m \angle A B E & & \text { Substitution. } \\
& =2(m \angle A B E) . & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle A B F & =2 m \angle A B E & & \\
8 s-6 & =2(2(s+11)) & & \text { Subssitution. } \\
8 s-6 & =4 s+44 & & \text { Simplify. } \\
8 s-4 s-6 & =4 s-4 s+44 & & \text { Subtract } 4 s \text { from each side. } \\
4 s-6 & =44 & & \text { Simplify. } \\
4 s-6 & +6=44+6 & & \text { Add } 6 \text { to each side. } \\
4 s & =50 & & \text { Simplify. } \\
\frac{4 s}{4} & =\frac{50}{4} & & \text { Divide each side by } 4 . \\
s & =12.5 & & \text { Simplify. }
\end{aligned}
$$

Substitute.

$$
\begin{aligned}
m \angle E B F & =m \angle A B E \\
& =2(s+11) \\
& =2(12.5+11) \\
& =47
\end{aligned}
$$

ANSWER:
47

1-4 Angle Measure

42. If $m \angle E B C=3 r+10$ and $m \angle A B E=2 r-20$, find $m \angle E B F$.

SOLUTION:

The angles $\angle A B E$ and $\angle E B C$ form a linear pair.
So, $m \angle A B E+m \angle E B C=180$.

$$
\begin{aligned}
m \angle A B E+m \angle A E B C & =180 & & \text { Definition of Linear Pair } \\
2 r-20+3 r+10 & =180 & & \text { Substitution. } \\
5 r-10 & =180 & & \text { Simplify. } \\
5 r-10+10 & =180+10 & & \text { Add } 10 \text { to each side. } \\
5 r & =190 & & \text { Simplify. } \\
\frac{5 r}{5} & =\frac{190}{5} & & \text { Divide each side by } 5 . \\
r & =38 & & \text { Simplify. }
\end{aligned}
$$

Substitute.
Since $m \angle E B F=m \angle A B E$,
$m \angle E B F=2 r-20$
$=2(38)-20$
$=76-20$
$=56$.
ANSWER:
56

1-4 Angle Measure

43. MAPS Estimate the measure of the angle formed by each city or location listed, the North Pole, and the Prime Meridian.

a. Nuuk, Greenland
b. Fairbanks, Alaska
c. Reykjavik, Iceland
d. Prime Meridian

SOLUTION:

a. The measure of the angle formed by the Prime meridian, North Pole, and Nuuk, Greenland is about 50.
b. The measure of the angle formed by the Prime meridian, North Pole, and Fairbanks, Alaska is about 140
c. The measure of the angle formed by the Prime meridian, North Pole, and Reykjavik, Iceland is about 20.
d. The measure of the angle formed by the Prime meridian, North Pole, and Prime Meridian us 0.

ANSWER:
a. about 50
b. about 140
c. about 20
d. 0
44. CCSS TOOLS A compass rose is a design on a map that shows directions. In addition to the directions of north, south, east, and west, a compass rose can have as many as 32 markings.
Refer to Page 42.
a. With the center of the compass as its vertex, what is the measure of the angle between due west and due north?
b. What is the measure of the angle between due north and north-west?
c. How does the north-west ray relate to the angle in part \mathbf{a} ?

SOLUTION:

a. The arrows for due west and due north are perpendicular to each other since they are part of a horizontal and vertical line. Perpendicular rays will form an angle with a measure of 90 .
b. The ray for north-west will be halfway between the arrows for due north and due west. So, the measure of the angle between north-west and due north is half of 90 or 45 .
c. The ray for north-west divides the angle between due north and due west into two congruent angles with measures of 45 . Therefore, it is the angle bisector.

ANSWER:
a. 90
b. 45
c. It is the angle bisector.

Plot the points in a coordinate plane and sketch $\angle X Y Z$. Then classify it as right, acute, or obtuse. 45. $X(5,-3), Y(4,-1), Z(6,-2)$

SOLUTION:

The angle measures less than 90°, so it is acute.
ANSWER:
acute

1-4 Angle Measure

46. $X(6,7), Y(2,3), Z(4,1)$ SOLUTION:
right

The angle formed appears to be a right angle. In Algebra 1, you learned that the product of the slopes of perpendicular lines is -1 .

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { Slope formula } \\
m_{\overleftrightarrow{X Y}} & =\frac{3-7}{2-6} \quad\left(x_{1}, y_{1}\right)=(6,7) ;\left(x_{2}, y_{2}\right)=(2,3) \\
m_{\overleftrightarrow{X Y}} & =\frac{-4}{-4} \text { or } 1 \quad \text { Simplify. } \\
m_{\overleftrightarrow{Y Z}} & =\frac{1-3}{4-2} \quad\left(x_{1}, y_{1}\right)=(2,3) ;\left(x_{2}, y_{2}\right)=(4,1) \\
m_{\overleftrightarrow{Y Z}} & =\frac{-2}{2} \text { or }-1 \quad \text { Simplify } .
\end{aligned}
$$

Since $1(-1)=-1$, the lines are perpendicular. Thus, the angle formed is a right angle and has a measure of 90 .
ANSWER:
right

1-4 Angle Measure

47. PHYSICS When you look at a pencil in water, it looks bent. This illusion is due to refraction, or the bending of light when it moves from one substance to the next.
Refer to Page 43.

a. What is $m \angle 1$? Classify this angle as acute, right, or obtuse.
b. What is $m \angle 2$? Classify this angle as acute, right, or obtuse.
c. Without measuring, determine how many degrees the path of the light changes after it enters the water. Explain your reasoning.

SOLUTION:

a. Use a protractor to measure $\angle 1$ in the diagram. The measure should be about 110 ; Since the measure is greater than 90 but less than 180, the angle is obtuse.
b. Use a protractor to measure $\angle 2$ in the diagram. The measure should be about 85 ; Since the measure is less than 90 , the angle is acute.
c. about 15 ; If the original path of the light is extended, the measure of the angle the original path makes with the refracted path represents the number of degrees the path of the light changed. The sum of the measure of this angle and the $m \angle 3$ is 180 . The measure of $\angle 3$ is $360-(110+85)$ or 165 , so the measure of the angle the original path makes with the refracted path is $180-165$ or 15 .

ANSWER:

a. about 110; obtuse
b. about 85; acute
c. about 15 ; If the original path of the light is extended, the measure of the angle the original path makes with the refracted path represents the number of degrees the path of the light changed. The sum of the measure of this angle and the $m \angle 3$ is 180 . The measure of $\angle 3$ is $360-(110+85)$ or 165 , so the measure of the angle the original path makes with the refracted path is $180-165$ or 15 .
48. MULTIPLE REPRESENTATIONS In this problem, you will explore the relationship of angles that compose opposite rays.

a. GEOMETRIC Draw four lines, each with points A, B, and C. Draw $\overrightarrow{B D}$ for each line, varying the placement of point D. Use a protractor to measure $\angle A B D$ and $\angle D B C$ for each figure.
b. TABULAR Organize the measures for each figure into a table. Include a row in your table to record the sum of these measures.
c. VERBAL Make a conjecture about the sum of the measures of the two angles. Explain your reasoning.
d. ALGEBRAIC If x is the measure of $\angle A B D$ and y is the measure of $\angle D B C$, write an equation that relates the two angle measures.

SOLUTION:

a. Sample answer:

b. Sample answer:

Angle	Measure
$\angle A B D$	50
$\angle D B C$	130
Sum	180

c. Sample answer: The sum of the measures of the two angles will always be 180 . Point B determines opposite rays $\overrightarrow{A B}$ and $\overrightarrow{B C}$, which form a line. Angles that form a straight line measure 180 .
d. $x+y=180$

ANSWER:
a. Sample answer:

b. Sample answer:

Angle	Measure
$\angle A B D$	50
$\angle D B C$	130
Sum	180

c. Sample answer: The sum of the measures of the two angles will always be 180 . Point B determines opposite rays $\overrightarrow{A B}$ and $\overrightarrow{B C}$, which form a line. Angles that form a straight line measure 180 .
d. $x+y=180$
49. OPEN ENDED Draw an obtuse angle named $A B C$. Measure $\angle A B C$. Construct an angle bisector $\overrightarrow{B D}$ of $\angle A B C$. Explain the steps in your construction and justify each step. Classify the two angles formed by the angle bisector.

SOLUTION:

Sample answer:
Step 1: Draw an obtuse angle. Label the vertex as B. Measure the angle with a protractor to be sure the measure of the angle is greater than 90 . Put the compass on point B and using any compass setting draw an arc that intersects both sides of the angle. Label the two points of intersection of the arc with the sides as A and C. (This will determine points on each side that are equal distance from the vertex.)
Step 2: Choose a setting for the compass that is greater than half the length $A C$. With the compass at point A, draw an arc in the interior of the angle. With the same compass setting, draw an arc from point C that intersects the arc from point A. (The point of intersection is equidistant from the sides of the angle.) From the vertex, draw $\overrightarrow{B D}$. The points on $\overrightarrow{B D}$ are all equidistant from the $\overrightarrow{B A}$ and $\overrightarrow{B C}$. The measurement of $\angle A B D$ and $\angle D B C$ are the same. Therefore, $\overrightarrow{B D}$ bisects $\angle A B C$. (Verify by using a protractor to measure $\angle A B D$ and $\angle C B D$.)
Half a number between 90 and 180 is less than 90 , so the two angles formed by the angle bisector are acute.

ANSWER:

The two angles formed are acute angles.
Sample answer: With my compass at point B, I drew an arc that intersects both sides of the angle. I labeled the two points of intersection of the arc with the sides as A and C. With my compass at point A, I drew an arc in the interior of the angle. With the same compass setting, I drew an arc from point C that intersected the arc from point A. From the vertex, I drew $\overrightarrow{B D}$. I used the same compass setting to draw the intersecting arcs, so $\overrightarrow{B D}$ divides $\angle A B C$ so that the measurement of $\angle A B D$ and $\angle D B C$ are equal. Therefore, $\overrightarrow{B D}$ bisects $\angle A B C$.
50. CHALLENGE Describe how you would use a protractor to measure the angle shown.

SOLUTION:

Sample answer: Measure the acute angle and subtract this measure from 360, a full circle.

ANSWER:

Sample answer: Measure the acute angle and subtract this measure from 360, a full circle.
51. CCSS ARGUMENTS The sum of two acute angles is sometimes, always, or never an obtuse angle. Explain.

SOLUTION:

Sometimes; sample answer: For example, if you add an angle measure of 4 and an angle measure of 6, you will have an angle measure of 10 , which is still acute. But if you add angles with measure of 50 and 60 , you will have an obtuse angle with a measure of 110 .

ANSWER:
Sometimes; sample answer: For example, if you add an angle measure of 4 and an angle measure of 6, you will have an angle measure of 10 , which is still acute. But if you add angles with measure of 50 and 60 , you will have an obtuse angle with a measure of 110 .

1-4 Angle Measure

52. CHALLENGE $\overrightarrow{M P}$ bisects $\angle L M N, \overrightarrow{M Q}$ bisects $\angle L M P$, and $\overrightarrow{M R}$ bisects $\angle Q M P$. If $m \angle R M P=21$, find m $\angle L M N$. Explain your reasoning.

SOLUTION:

If $m \angle R M P=21$ and $\overrightarrow{M R}$ bisects $\angle Q M P$, then $m \angle Q M P=2(21)$ or 42 .
If $m \angle Q M P=42$ and $\overrightarrow{M Q}$ bisects $\angle L M P$, then $m \angle L M P=2(42)$ or 84 .
If $m \angle L M P=84$ and $\overrightarrow{M P}$ bisects $\angle L M N$, then $m \angle L M N=2(84)$ or 168.
ANSWER:
168; If $m \angle R M P=21$ and $\overrightarrow{M R}$ bisects $\angle Q M P$, then $m \angle Q M P=2(21)$ or 42 . If $m \angle Q M P=42$ and $\overrightarrow{M Q}$ bisects $\angle L M P$, then $m \angle L M P=2(42)$ or 84 . If $m \angle L M P=84$ and $\overrightarrow{M P}$ bisects $\angle L M N$, then $m \angle L M N=2(84)$ or 168 .

1-4 Angle Measure

53. WRITING IN MATH Rashid says that he can estimate the measure of an acute angle using a piece of paper to within six degrees of accuracy. Explain how this would be possible. Then use this method to estimate the measure of the angle shown.

SOLUTION:

Sample answer: To measure an acute angle, you can fold the corner of the paper so that the edges meet. This would bisect the angle, allowing you to determine whether the angle was between 0° and 45° or between 45° and 90°. If the paper is folded two more times in the same manner and cut off this corner of the paper, the fold lines would form the increments of a homemade protractor that start at 0° on one side and progress in $90 \div 8$ or 11.25° increments, ending at the adjacent side, which would indicate 90°. You can estimate halfway between each fold line, which would give you an accuracy of $11.25^{\circ} \div 2$ or about 6°. The actual measure of the angle shown is 52°. An estimate between 46° and 58° would be acceptable.

ANSWER:

Sample answer: To measure an acute angle, you can fold the corner of the paper so that the edges meet. This would bisect the angle, allowing you to determine whether the angle was between 0° and 45° or between 45° and 90°. If the paper is folded two more times in the same manner and cut off this corner of the paper, the fold lines would form the increments of a homemade protractor that start at 0° on one side and progress in $90 \div 8$ or 11.25° increments, ending at the adjacent side, which would indicate 90°. You can estimate halfway between each fold line, which would give you an accuracy of $11.25^{\circ} \div 2$ or about 6°. The actual measure of the angle shown is 52°. An estimate between 46° and 58° would be acceptable.

1-4 Angle Measure

54. Which of the following angles measures closest to 60° ?

A

B

C

D

SOLUTION:

$\angle D$ is obtuse, so the measure of $\angle D$ is greater than $90 . \angle C$ is almost a right angle, so the measure of $\angle C$ is close to 90 . $\angle A$ appears to be the angle bisector of a right angle, so the measure of $\angle A$ would be close to $45 . \angle B$ between $\angle A$ and $\angle C$ in size, so the measure of $\angle B$ is between 45 and 90 . Therefore, the correct choice is B .

ANSWER:
B
55. SHORT RESPONSE Leticia surveyed 50 English majors at a university to see if the school should play jazz music in the cafeteria during lunch. The school has 75 different majors and a total of 2000 students. Explain why the results of Leticia's survey are or are not representative of the entire student body.

SOLUTION:

Sample answer: Leticia's survey does not represent the entire student body because she did not take a random sample; she only took a sample of students from one major.

ANSWER:
Sample answer: Leticia's survey does not represent the entire student body because she did not take a random sample; she only took a sample of students from one major.

1-4 Angle Measure

56. In the figure below, if $m \angle B A C=38$, what must be the measure of $\angle B A D$ in order for $\overrightarrow{A C}$ to be an angle bisector?

F 142
G 76
H 52
J 38

SOLUTION:

If AC is a angle bisector then. $\angle A C D+\angle C A B \cong \angle D A B$.
Then $\angle D A B$ must be twice as much as much as $\angle C A B$ or $\angle D A B \cong 2 \angle C A B$
$m \angle D A B=2 m \angle C A B$

$$
\begin{array}{cl}
=2(38) & \text { Subsitution } . \\
=76 & \text { Simplify }
\end{array}
$$

So, $\angle B A D$ should measure 76°. The correct choice is G.

ANSWER:

G
57. SAT/ACT If n is divisible by 2,5 , and 14 , which of the following is also divisible by these numbers?

A $n+7$
B $n+10$
C $n+14$
D $n+40$
E $n+70$

SOLUTION:

7 is not divisible by either of 2,5 , or 14 .
10 is divisible by 2 and 5 , but not by 14 .
14 is divisible by 2 and 14 not by 5 .
70 is divisible by 2,5 and 14 .
So, $n+70$ is divisible by 2,5 , and 14 .
The correct choice is E .

ANSWER:

E

1-4 Angle Measure

Find the distance between each pair of points. Round to the nearest hundredth. 58. $A(-1,-8), B(3,4)$

SOLUTION:
Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(3-(-1))^{2}+(4-(-8))^{2}} & & \text { Substitution. } \\
& =\sqrt{4^{2}+12^{2}} & & \text { Subtraction. } \\
& =\sqrt{16+144} & & \text { Square terms. } \\
& =\sqrt{160} & & \text { Addition. } \\
& \approx 12.65 & & \text { Evaluate square root. }
\end{aligned}
$$

ANSWER:
12.65
59. $C(0,1), D(-2,9)$

SOLUTION:

Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(-2-0)^{2}+(9-1)^{2}} & & \text { Substitution. } \\
& =\sqrt{(-2)^{2}+8^{2}} & & \text { Subtraction. } \\
& =\sqrt{4+64} & & \text { Square terms. } \\
& =\sqrt{68} & & \text { Addition. } \\
& \approx 8.25 & & \text { Evaluate square root. }
\end{aligned}
$$

ANSWER:
8.25

1-4 Angle Measure

60. $E(-3,-12), F(5,4)$

SOLUTION:

Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(5-(-3))^{2}+(4-(-12))^{2}} & & \text { Substitution. } \\
& =\sqrt{8^{2}+16^{2}} & & \text { Subtraction. } \\
& =\sqrt{64+256} & & \text { Square terms. } \\
& =\sqrt{320} & & \text { Addition. } \\
& \approx 17.89 & & \text { Evaluate square root. }
\end{aligned}
$$

ANSWER:
17.89
61. $G(4,-10), H(9,-25)$

SOLUTION:
Use the Distance Formula.

$$
\begin{array}{rlrl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(9-4)^{2}+(-25-(-10))^{2}} & & \text { Substitution. } \\
& =\sqrt{5^{2}+(-15)^{2}} & & \text { Subtraction. } \\
& =\sqrt{25+225} & & \text { Square terms. } \\
& =\sqrt{250} & & \text { Addition. } \\
\approx 15.81 & & \text { Evaluate square root. }
\end{array}
$$

ANSWER:
15.81

1-4 Angle Measure

62. $J\left(1, \frac{1}{4}\right), K\left(-3, \frac{7}{4}\right)$

SOLUTION:

Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(-3-1)^{2}+\left(\frac{7}{4}-\frac{1}{4}\right)^{2}} & & \text { Substitution. } \\
& =\sqrt{(-4)^{2}+\left(\frac{6}{4}\right)^{2}} & & \text { Subtraction. } \\
& =\sqrt{16+\frac{9}{4}} & & \text { Square terms. } \\
& =\sqrt{18.25} & & \text { Addition. } \\
& \approx 4.27 & & \text { Evaluate square root. }
\end{aligned}
$$

ANSWER:

4.27
63. $L\left(-5, \frac{8}{5}\right), M\left(5, \frac{2}{5}\right)$

SOLUTION:

Use the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(5-(-5))^{2}+\left(\frac{2}{5}-\frac{8}{5}\right)^{2}} & & \text { Substitution. } \\
& =\sqrt{10^{2}+\left(-\frac{6}{5}\right)^{2}} & & \text { Subtraction. } \\
& =\sqrt{100+\frac{36}{25}} & & \text { Square terms. } \\
& =\sqrt{101.44} & & \text { Addition. } \\
& \approx 10.07 & & \text { Evaluate square root. }
\end{aligned}
$$

ANSWER:
10.07

1-4 Angle Measure

Find the value of the variable and $S T$ if S is between R and T.
64. $R S=7 a, S T=12 a, R T=76$

SOLUTION:

$$
\begin{aligned}
R S+S T & =R T & & \text { Segment Addition Postulate } \\
7 a+12 a & =76 & & \text { Substitution. } \\
19 a & =76 & & \text { Simplify. } \\
\frac{19 a}{19} & =\frac{76}{19} & & \text { Divide each side by } 19 . \\
a & =4 & & \text { Simplify. }
\end{aligned}
$$

Substitute the value of a to find the value of $S T$.
$S T=12 a=12(4)=48$
ANSWER:
$a=4 ; S T=48$
65. $R S=12, S T=2 x, R T=34$

SOLUTION:

$$
\begin{aligned}
R S+S T & =R T & & \text { Segm ent Addition Postulate } \\
12+2 x & =34 & & \text { Substitution. } \\
12-12+2 x & =34-12 & & \text { Subtract } 12 \text { from each side. } \\
2 x & =22 & & \text { Simplify. } \\
\frac{2 x}{2} & =\frac{22}{2} & & \text { Divide each side by } 2 . \\
a & =11 & & \text { Simplify. }
\end{aligned}
$$

Substitute the value of x to find the value of $S T$.
$S T=2 a=2(11)=22$
ANSWER:
$x=11 ; S T=22$

1-4 Angle Measure

66. PHOTOGRAPHY Photographers often place their cameras on tripods. In the diagram, the tripod is placed on an inclined surface, and the length of each leg is adjusted so that the camera remains level with the horizon. Are the feet of the tripod coplanar? Explain your reasoning.

SOLUTION:

Yes; the feet of the tripod model three points that are noncollinear. Because three noncollinear points are used to name exactly one plane, the feet of the tripod are coplanar.

ANSWER:
Yes; the feet of the tripod model three points that are noncollinear. Because three noncollinear points are used to name exactly one plane, the feet of the tripod are coplanar.

Complete each sentence.

67.54 in = ? ft

SOLUTION:

$$
\begin{array}{rlrl}
54 \mathrm{in} . & =? \\
& =54 \div 12 & \mathrm{ft} & \text { smaller unit } \rightarrow \text { larger unit } \\
& =4.5 \mathrm{ft}=12 \mathrm{in} ., \div \text { by } 12
\end{array}
$$

ANSWER:
4.5
68. $275 \mathrm{~mm}=$? m

SOLUTION:

$$
\begin{array}{rlr}
275 \mathrm{~mm} & =? \text { cm } & \text { smaller unit } \rightarrow \text { larger unit } \\
& =275 \div 10 & 10 \mathrm{~mm}=1 \mathrm{~cm}, \div \text { by } 10 \\
& =27.5 \mathrm{~cm} & \text { Simplify } . \\
27.5 \mathrm{~cm} & =\frac{?}{} \mathrm{~m} & \text { smaller unit } \rightarrow \text { larger unit } \\
& =27.5 \div 100 & 100 \mathrm{~cm}=1 \mathrm{~m}, \div \text { by } 100 \\
& =0.275 \mathrm{~m} & \text { Simplify. }
\end{array}
$$

ANSWER:

0.275

1-4 Angle Measure

$69.7 \mathrm{gal}=$ \qquad pt

SOLUTION:

$$
\begin{aligned}
& 7 \mathrm{gal}=? \text { qt larger unit } \rightarrow \text { smaller unit } \\
& =7 \times 4 \quad 4 \mathrm{qt}=1 \mathbf{g a l}, \times \text { by } 4 \\
& =28 \mathrm{qt} \quad \text { Simplify. } \\
& \begin{array}{rlr}
28 \mathrm{qt} & =\frac{?}{\mathrm{pt}} \quad \begin{array}{l}
\text { larger unit } \rightarrow \text { smaller unit } \\
\\
\\
\\
\\
\\
\\
=28 \times 2 \mathrm{pt}
\end{array} \quad \begin{array}{l}
\text { Simplify. }
\end{array}
\end{array}
\end{aligned}
$$

ANSWER:
56

Solve each equation.

70. $(90-x)-x=18$

SOLUTION:

$$
\begin{aligned}
(90-x)-x & =18 & & \text { Original equation } \\
90-2 x & =18 & & \text { Simplify. } \\
90-90-2 x & =18-90 & & \text { Subtract } 90 \text { from each side. } \\
-2 x & =-72 & & \text { Simplify. } \\
\frac{-2 x}{-2} & =\frac{-72}{-2} & & \text { Divide each side by }-2 . \\
x & =36 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
36
71. $(5 x+3)+7 x=180$

SOLUTION:

$$
\begin{aligned}
(5 x+3)+7 x & =180 & & \text { Original equation } \\
12 x+3 & =180 & & \text { Simplify. } \\
12 x+3-3 & =180-3 & & \text { Subtract } 3 \text { from each side. } \\
12 x & =177 & & \text { Simplify. } \\
\frac{12 x}{12} & =\frac{177}{12} & & \text { Divide each side by } 12 . \\
x & =14.75 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
14.75

1-4 Angle Measure

72. $(13 x+10)+2 x=90$

SOLUTION:

$$
\begin{aligned}
(13 x+10)+2 x & =90 & & \text { Original equation } \\
15 x+10 & =90 & & \text { Simplify. } \\
15 x+10-10 & =90-10 & & \text { Subtract } 10 \text { from each side. } \\
15 x & =80 & & \text { Simplify. } \\
\frac{15 x}{15} & =\frac{80}{15} & & \text { Divide each side by } 15 . \\
x & =5 \frac{5}{15} & & \text { Simplify. } \\
x & =5 \frac{1}{3} & &
\end{aligned}
$$

ANSWER:
$5 \frac{1}{3}$
73. $(180-x)-4 x=56$

SOLUTION:

$$
\begin{aligned}
(180-x)-4 x & =56 & & \text { Original equation } \\
180-5 x & =56 & & \text { Simplify. } \\
180-180-5 x & =56-180 & & \text { Subtract } 180 \text { from each side. } \\
-5 x & =-124 & & \text { Simplify. } \\
\frac{-5 x}{-5} & =\frac{-124}{-5} & & \text { Divide each side by }-5 . \\
x & =24.8 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
24.8
74. $(4 n+17)+(n-2)=180$

SOLUTION:

$$
\begin{aligned}
(4 n+17)+(n-2) & =180 & & \text { Original equation } \\
5 n+15 & =180 & & \text { Simplify. } \\
5 n+15-15 & =180-15 & & \text { Subtract } 15 \text { from each side. } \\
5 n & =165 & & \text { Simplify. } \\
\frac{5 n}{5} & =\frac{165}{5} & & \text { Divide each side by } 5 . \\
n & =33 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:

1-4 Angle Measure

75. $(8 a-23)+(9-2 a)=90$

SOLUTION:

$$
\begin{aligned}
(8 a-23)+(9-2 a) & =90 & & \text { Original equation } \\
6 a-14 & =90 & & \text { Simplify. } \\
6 a-14+14 & =90+14 & & \text { Add } 14 \text { to each side. } \\
6 a & =104 & & \text { Simplify. } \\
\frac{6 a}{6} & =\frac{104}{6} & & \text { Divide each side by } 6 . \\
a & =17 \frac{2}{6} & & \text { Simplify. } \\
a & =17 \frac{1}{3} & &
\end{aligned}
$$

ANSWER:
$17 \frac{1}{3}$

