Name an angle pair that satisfies each condition.


1. two acute vertical angles

## SOLUTION:

Vertical angles are two nonadjacent angles formed by two intersecting lines.


You can use the corner of a piece of paper to see that $\angle Z V Y$ and $\angle W V U$ are less than right angles.
Therefore, $\angle Z V Y$ and $\angle W V U$ are acute vertical angles.
ANSWER:
$\angle Z V Y, \angle W V U$
2. two obtuse adjacent angles

## SOLUTION:

Adjacent angles are two angles that lie in the same plane and have a common vertex and a common side. Since $\angle U V Z$ and $\angle X V Z$ share vertex $V$ and side $\overrightarrow{V Z}$, they are adjacent angles.


You can use the corner of a piece of paper to see that $\angle U V Z$ and $\angle X V Z$ are each larger than a right angle.
Therefore, $\angle U V Z$ and $\angle X V Z$ are obtuse adjacent angles.
ANSWER:
$\angle U V Z, \angle X V Z$

## 1-5 Angle Relationships

3. CAMERAS Cameras use lenses and light to capture images.

a. What type of angles are formed by the object and its image?
b. If the measure of $\angle 2$ is 15 , what is the measure of $\angle 1$ ?

## SOLUTION:

a. The object and its image are two nonadjacent angles formed by two intersecting lines. So they are vertical angles.
b. Vertical angles are congruent. So $m \angle 1=m \angle 2$.

Substitute $m \angle 2=15$.
$m \angle 1=15$
Therefore, the measure of $\angle 1$ is also 15 .
ANSWER:
a. vertical
b. 15
4. ALGEBRA The measures of two complementary angles are $7 x+17$ and $3 x-20$. Find the measures of the angles.

## SOLUTION:

Complementary angles are two angles with measures that have a sum of 90 .

$$
\begin{aligned}
(7 x+17)+(3 x-20) & =90 & & \text { Original equation } \\
10 x-3 & =90 & & \text { Simplify. } \\
10 x-3+3 & =90+3 & & \text { Add } 3 \text { to each side. } \\
10 x & =93 & & \text { Simplify. } \\
\frac{10 x}{10} & =\frac{93}{10} & & \text { Divide each side by } 10 . \\
x & =9.3 & & \text { Simplify. }
\end{aligned}
$$

Substitute $x=9.3$ in $7 x+17$.

$$
\begin{aligned}
7 x+17 & =7(9.3)+17 \\
& =82.1
\end{aligned}
$$

Substitute $x=9.3$ in $3 x-20$.

$$
\begin{aligned}
3 x-20 & =3(9.3)-20 \\
& =7.9
\end{aligned}
$$

The measures of two complementary angles are 82.1 and 7.9.
ANSWER:
82.1, 7.9

## 1-5 Angle Relationships

5. ALGEBRA Lines $x$ and $y$ intersect to form adjacent angles 2 and 3. If $m \angle 2=3 a-27$ and $m \angle 3=2 b+14$, find the values of $a$ and $b$ so that $x$ is perpendicular to $y$.

## SOLUTION:



Line $x$ is perpendicular to $y$. So, $m \angle 2=90$ and $m \angle 3=90$.
Substitute $m \angle 2=3 a-27$ in $m \angle 2=90$.

$$
\begin{aligned}
m \angle 2 & =90 & & \text { Definition of Right Angles } \\
3 a-27 & =90 & & \text { Substitution. } \\
3 a-27+27 & =90+27 & & \text { Add } 27 \text { to each side. } \\
3 a & =117 & & \text { Simplify. } \\
\frac{3 a}{3} & =\frac{117}{3} & & \text { Divide each side by } 3 . \\
a & =39 & & \text { Simplify. }
\end{aligned}
$$

Substitute $m \angle 3=2 b+14$ in $m \angle 3=90$.

$$
\begin{aligned}
m \angle B & =90 & & \text { Definition of Right Angle } \\
2 b+14 & =90 & & \text { Substitution. } \\
2 b+14-14 & =90-14 & & \text { Subtract } 14 \text { from each side. } \\
2 b & =76 & & \text { Simplify. } \\
\frac{2 b}{2} & =\frac{76}{2} & & \text { Divide each side by } 2 . \\
b & =38 & & \text { Simplify. }
\end{aligned}
$$

So, $a$ is 39 and $b$ is 38 .
ANSWER:
$a=39 ; b=38$

Determine whether each statement can be assumed from the figure. Explain.

6. $\angle C A D$ and $\angle D A B$ are complementary.

## SOLUTION:

Complementary angles are two angles with measures that have a sum of 90 .
While $\angle C A B$ appears to be a right angle, no information verifies this. So, $\angle C A D$ and $\angle D A B$ may not be complementary. The answer is "No".

ANSWER:
No; while $\angle C A B$ appears to be a right angle, no information verifies this.
7. $\angle E D B$ and $\angle B D A$ are adjacent, but they are neither complementary nor supplementary.

## SOLUTION:

Adjacent angles are two angles that lie in the same plane and have a common vertex and a common side.
$\angle E D B$ and $\angle B D A$ share a common side and vertex, so they are adjacent.
Since $m \angle E D B+m \angle B D A+m \angle A D C=90, \angle E D B$ and $\angle B D A$ cannot be complementary or supplementary. So, the answer is "Yes".

## ANSWER:

Yes: they share a common side and vertex, so they are adjacent. Since $m \angle E D B+m \angle B D A+m \angle A D C=90, \angle E D B$ and $\angle B D A$ cannot be complementary or supplementary.

Name an angle or angle pair that satisfies each condition.

8. two adjacent angles

## SOLUTION:

Sample answer: Adjacent angles are two angles that lie in the same plane and have a common vertex and a common side. There are many adjacent angles in the figure.
$\angle C B F$ and $\angle A B F$ are adjacent angles, $\angle H G E$ and $\angle D G E$ are adjacent angles.
ANSWER:
Sample answer: $\angle H G E, \angle D G E$
9. two acute vertical angles

## SOLUTION:

Sample answer: Vertical angles are two nonadjacent angles formed by two intersecting lines. There are many acute vertical angles in the figure. $\angle B F C$ and $\angle D F E$ are acute vertical angles.

ANSWER:
Sample answer: $\angle B F C, \angle D F E$
10. two obtuse vertical angles

## SOLUTION:

Sample answer: Vertical angles are two nonadjacent angles formed by two intersecting lines. Nonadjacent angles $H G E$ and $F G D$ are formed by $\overleftrightarrow{H D}$ and $\overleftrightarrow{B E}$ intersecting at $G$. Each angle is greater than a right angle. Therefore, $\angle H G E$ and $\angle F G D$ are obtuse vertical angles.

ANSWER:
Sample answer: $\angle H G E, \angle F G D$
11. two complementary adjacent angles

## SOLUTION:

If the sum of the measures of two adjacent angles is 90 , then they are complementary adjacent angles.
$\angle F D G$ and $\angle G D E$ share a common side and vertex, also $m \angle F D G+m \angle G D E=90$.
So, $\angle F D G$ and $\angle G D E$ are complementary adjacent angles.
ANSWER:
$\angle F D G, \angle G D E$
12. two complementary nonadjacent angles

## SOLUTION:

If the sum of the measures of two nonadjacent angles is 90 , then they are complementary nonadjacent angles. $\angle B C F$ and $\angle B A D$ are nonadjacent angles, and $m \angle B C F+m \angle B A D=90$.
So, $\angle B C F$ and $\angle B A D$ are complementary nonadjacent angles.
ANSWER:
$\angle B C F, \angle B A D$
13. two supplementary adjacent angles

## SOLUTION:

Sample answer: If the sum of the measures of two adjacent angles is 180 , then they are supplementary adjacent angles. There are many supplementary adjacent angles in the figure.
$\angle C B F$ and $\angle A B F$ share a common side and vertex, also $m \angle C B F+m \angle A B F=180$.
So, $\angle C B F$ and $\angle A B F$ are supplementary adjacent angles.
ANSWER:
Sample answer: $\angle C B F, \angle A B F$
14. a linear pair whose vertex is $F$

## SOLUTION:

Sample answer: A linear pair is a pair of adjacent angles with noncommon sides that are opposite rays. $\angle B F C$ and $\angle B F D$ are linear pair with vertex $F, \angle G F D$ and $\angle G F C$ are linear pair with vertex $F$.

ANSWER:
Sample answer: $\angle B F C, \angle B F D$
15. an angle complementary to $\angle F D G$

## SOLUTION:

Complementary angles are two angles with measures that have a sum of 90 .
Since $m \angle F D G+m \angle G D E=90$,
$\angle G D E$ is complementary to $\angle F D G$.
ANSWER:
$\angle G D E$
16. an angle supplementary to $\angle C B F$

## SOLUTION:

Sample answer: Supplementary angles are two angles with measures that have a sum of 180 .
Since $m \angle C B F+m \angle J B F=180, \angle J B F$ is supplementary to $\angle C B F$.
ANSWER:
Sample answer: $\angle J B F$

## 1-5 Angle Relationships

17. an angle supplementary to $\angle J A E$

## SOLUTION:

Supplementary angles are two angles with measures that have a sum of 180 .
Since $m \angle J A E+m \angle C A E=180, \angle C A E$ is supplementary to $\angle J A E$.
ANSWER:
$\angle C A E$
18. CCSS REASONING You are using a compass to drive $23^{\circ}$ east of north. Express your direction in another way using an acute angle and two of the four directions: north, south, east, and west. Explain your reasoning.


## SOLUTION:

Since the measure of the angle between north and east is 90 , you can use the complement of $23^{\circ}$ (the original angle) and describe the direction as north of east instead of east of north. The complement of $23^{\circ}$ is $67^{\circ}$. So, the answer is $67^{\circ}$ north of east.

## ANSWER:

Sample answer: $67^{\circ}$ north of east; since the measure of the angle between north and east is 90 , you can use the complement of the original angle and describe the direction as north of east instead of east of north.

## Find the value of each variable.

19. 



## SOLUTION:

In the figure, the $120^{\circ}$ angle and the $(2 x-10)^{\circ}$ angle are vertical angles.
Vertical angles are congruent.

$$
\begin{aligned}
120 & =2 x-10 & & \text { V ertical angles } \\
120+10 & =2 x-10+10 & & \text { Add } 10 \text { to each side. } \\
130 & =2 x & & \text { Simplify. } \\
\frac{130}{2} & =\frac{2 x}{2} & & \text { Divide each side by } 2 . \\
65 & =x & & \text { Simplify. }
\end{aligned}
$$

## ANSWER:

65

## 1-5 Angle Relationships

20. 



## SOLUTION:

The angles in a linear pair are supplementary.
So, $(2 x)^{\circ}+(4 x+108)^{\circ}=180^{\circ}$.

$$
\begin{aligned}
2 x+4 x+108 & =180 & & \text { Def. of Linear Pair } \\
6 x+108 & =180 & & \text { Simplify. } \\
6 x+108-108 & =180-108 & & -108 \text { from each side. } \\
6 x & =72 & & \text { Simplify. } \\
\frac{6 x}{6} & =\frac{72}{6} & & \div \text { each side by } 6 . \\
x & =12 & & \text { Simplify. }
\end{aligned}
$$

So, $x$ is 12 .
ANSWER:
$x=12$

## 1-5 Angle Relationships

21. 



## SOLUTION:

Since $(2 x+25)^{\circ}$ and $(3 x-10)^{\circ}$ are vertical angles, they are congruent.

$$
\begin{aligned}
2 x+25 & =3 x-10 & & \text { Vertical angles } \\
2 x-3 x+25 & =3 x-3 x-10 & & -3 x \text { from each side. } \\
-x+25 & =-10 & & \text { Simplify. } \\
-x+25-25 & =-10-25 & & -25 \text { from each side. } \\
-x & =-35 & & \text { Simplify. } \\
-1(-x) & =-1(-35) & & \times \text { each side by }-1 . \\
x & =35 & & \text { Simplify. }
\end{aligned}
$$

$$
\begin{aligned}
2 x+25 & =2 \cdot 35+25 & & \text { Replace } x \text { with } 35 . \\
& =70+25 & & \text { Multiply. } \\
& =95 & & \text { Addition. }
\end{aligned}
$$

Solve for $y$.

$$
\begin{aligned}
(2 x+25)+y & =180 & & \text { Definition of Supplem entary Angles. } \\
95+y & =180 & & \text { Replace }(2 x+25) \text { with } 95 . \\
95-95+y & =180-95 & & \text { Subtract } 95 \text { from each side. } \\
y & =85 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
$x=35 ; y=85$

## 1-5 Angle Relationships


22.

## SOLUTION:

In the figure, $(8 y-102)^{\circ}$ angle and $(2 y+6)^{\circ}$ angle are vertical angles.
Vertical angles are congruent. So, $(8 y-102)^{\circ}=(2 y+6)^{\circ}$.

$$
\begin{aligned}
8 y-102 & =2 y+6 & & \text { Def. of V ertical Angles. } \\
8 y-2 y-102 & =2 y-2 y+6 & & -2 y \text { from each side. } \\
6 y-102 & =6 & & \text { Simplify. } \\
6 y-102+102 & =6+102 & & +102 \text { to each side. } \\
6 y & =108 & & \text { Simplify. } \\
\frac{6 y}{6} & =\frac{108}{6} & & \div \text { each side by } 6 . \\
y & =18 & & \text { Simplify. }
\end{aligned}
$$

The angles in a linear pair are supplementary.
So, $(8 y-102)^{\circ}+(3 x)^{\circ}=180^{\circ}$.

$$
\begin{aligned}
(8 y-102)+(3 x) & =180 & & \text { Def of Supplem entary Angles. } \\
8(18)-102+3 x & =180 & & \text { Replace } y \text { with } 18 . \\
144-102+3 x & =180 & & \text { Multiply. } \\
42+3 x & =180 & & \text { Subtraction. } \\
42-42+3 x & =180-42 & & \text { Subtract 42 from each side. } \\
3 x & =138 & & \text { Simplify. } \\
\frac{3 x}{3} & =\frac{138}{3} & & \text { Divide each side by } 3 . \\
x & =46 & & \text { Simplify. }
\end{aligned}
$$

So, the values of the variables are $x=46$ and $y=18$.

ANSWER:
$x=46 ; y=18$

## 1-5 Angle Relationships

23. 

$\frac{(2 y+50)^{\circ} \stackrel{(7 x-248)^{\circ}}{(5 y-17)^{\circ}} \overbrace{(x+44)^{\circ}}}{}$

## SOLUTION:

Supplementary angles have measures that sum to 180 . So, $(2 y+50)^{\circ}+(5 y-17)^{\circ}=180^{\circ}$ and $(x+44)^{\circ}+(7 x-248)^{\circ}=180^{\circ}$.

Consider $(2 y+50)^{\circ}+(5 y-17)^{\circ}=180^{\circ}$.

$$
\begin{aligned}
2 y+50+5 y-17 & =180 & & \text { Def. of Supplem entary Angles. } \\
7 y+33 & =180 & & \text { Simplify. } \\
7 y+33-33 & =180-33 & & -33 \text { from each side. } \\
7 y & =147 & & \text { Simplify. } \\
\frac{7 y}{7} & =\frac{147}{7} & & \div \text { each side by } 7 . \\
y & =21 & & \text { Simplify. } \\
7 x-248+x+44 & =180 & & \text { Def. of Supplem entary Angles. } \\
8 x-204 & =180 & & \text { Simplify. } \\
8 x-204+204 & =180+204 & & \text { Add } 204 \text { to each side. } \\
8 x & =384 & & \text { Simplify. } \\
\frac{8 x}{8} & =\frac{384}{8} & & \text { Divide each side by } 8 . \\
x & =48 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
$x=48 ; y=21$

## 1-5 Angle Relationships

24. 



## SOLUTION:

In the figure, $(5 x+4)^{\circ}$ angle and $(114)^{\circ}$ angle are vertical angles.
Vertical angles are congruent. So, $(5 x+4)^{\circ}=114^{\circ}$.

$$
\begin{aligned}
5 x+4 & =114 & & \text { Def. of V ertical Angles. } \\
5 x+4-4 & =114-4 & & -4 \text { from each side. } \\
5 x & =110 & & \text { Simplify. } \\
\frac{5 x}{5} & =\frac{110}{5} & & \div \text { each side by } 5 . \\
x & =22 & & \text { Simplify. }
\end{aligned}
$$

In the figure, $114^{\circ}+(3 x-24)^{\circ}+(2 y)^{\circ}=180^{\circ}$.

$$
\begin{aligned}
114+3 x-24+2 y & =180 & & \text { Def.of Supplem entary Angles. } \\
3 x+2 y+90 & =180 & & \text { Subtraction. } \\
3(22)+2 y+90 & =180 & & \text { Replace } x \text { with } 22 . \\
66+2 y+90 & =180 & & \text { Mutliply. } \\
2 y+156 & =180 & & \text { Addition. } \\
2 y+156-156 & =180-156 & & \text { Subtract } 156 \text { from each side. } \\
2 y & =24 & & \text { Simplify. } \\
\frac{2 y}{2} & =\frac{24}{2} & & \text { Divide each side by } 2 . \\
y & =12 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
$x=22 ; y=12$

## 1-5 Angle Relationships

25. ALGEBRA $\angle E$ and $\angle F$ are supplementary. The measure of $\angle E$ is 54 more than the measure of $\angle F$. Find the measures of each angle.

## SOLUTION:

Supplementary angles are two angles with measures that have a sum of 180 . Then, $m \angle E+m \angle F=180$. It is given that $m \angle E=m \angle F+54$.

Substitute.

$$
\begin{aligned}
m \angle E+m \angle F & =180 & & \text { Def. of Supplem entary Angles. } \\
(54+m \angle F)+m \angle F & =180 & & \text { Replace } m \angle E \text { with } 54+m \angle F . \\
54+2(m \angle F) & =180 & & \text { Simplify. } \\
54-54+2(m \angle F) & =180-54 & & \text { Subtract } 54 \text { from each side. } \\
2(m \angle F) & =126 & & \text { Simplify. } \\
\frac{2(m \angle F)}{2} & =\frac{126}{2} & & \text { Divide each side by } 2 . \\
m \angle F & =63 & & \text { Simplify. }
\end{aligned}
$$

Substitute $m \angle F=63$ in $m \angle E=m \angle F+54$.

$$
\begin{aligned}
m \angle E & =63+54 \\
& =117
\end{aligned}
$$

ANSWER:
$m \angle F=63 ; m \angle E=117$

## 1-5 Angle Relationships

26. ALGEBRA The measure of an angle's supplement is 76 less than the measure of the angle. Find the measure of the angle and its supplement.

## SOLUTION:

Supplementary angles are two angles with measures that have a sum of 180 .
Let $x$ and $y$ be the angle and its supplement respectively.
$y=x-76$

By the definition of supplementary angles, $x+y=180$.

$$
\begin{array}{rlrl}
x+y & =180 & & \text { Def. of Supplem entary Angles. } \\
x+(x-76) & =180 & & \text { Replace } y \text { with }(x-76) . \\
2 x-76 & =180 & & \text { Simplify. } \\
2 x-76+76 & =180+76 & & \text { Add 76 to each side. } \\
2 x & =256 & & \text { Simplify. } \\
\frac{2 x}{2} & =\frac{256}{2} & & \text { Divide each side by } 2 . \\
x & =128 & & \text { Simplify. } \\
& \begin{array}{rlrl}
\text { Substitute } x=128 & \text { in } y=x-76 . \\
y=128-76 & & & \\
& =52
\end{array} &
\end{array}
$$

The measure of the angle and its supplement are 128 and 52 respectively.
ANSWER:
128; 52

## 1-5 Angle Relationships

27. ALGEBRA The measure of the supplement of an angle is 40 more than two times the measure of the complement of the angle. Find the measure of the angle.

## SOLUTION:

Let $x$ be the measure of an angle.
The measure of an angle which is complementary to $x^{\circ}$ angle is $90-x$.
The measure of an angle which is supplementary to $x^{\circ}$ angle is $180-x$.

$$
\begin{aligned}
180-x & =40+2(90-x) & & \text { Supplemntary angle } \\
180-x & =40+180-2 x & & \text { Distributive Property } \\
180-x & =220-2 x & & \text { Addition. } \\
180-x+2 x & =220-2 x+2 x & & \text { Add } 2 x \text { to each side. } \\
180+x & =220 & & \text { Simplify. } \\
180-180+x & =220-180 & & \text { Subtract } 180 \text { from each side. } \\
x & =40 & & \text { Simplify. }
\end{aligned}
$$

The measure of an angle is 40 .
ANSWER:
40
28. ALGEBRA $\angle 3$ and $\angle 4$ form a linear pair. The measure of $\angle 3$ is four more than three times the measure of $\angle 4$. Find the measure of each angle.

## SOLUTION:

The angles in a linear pair are supplementary. So, $m \angle 3+m \angle 4=180$. It is given that $m \angle 3=3 m \angle 4+4$.

$$
\begin{aligned}
m \angle 3+m \angle 4 & =180 & & \text { Def. of Supplem entary Angles. } \\
(3 m \angle 4+4)+m \angle 4 & =180 & & \text { Subsitute }(3 m \angle 4+4) \text { for } m \angle 3 \\
4 m \angle 4+4 & =180 & & \text { Simplify. } \\
4 m \angle 4+4-4 & =180-4 & & \text { Subtract } 4 \text { from each side. } \\
4 m \angle 4 & =176 & & \text { Simplify. } \\
\frac{4 m \angle 4}{4} & =\frac{176}{4} & & \text { Divide each side by } 4 . \\
m \angle 4 & =44 & & \text { Simplify. }
\end{aligned}
$$

Substitute $m \angle 4=44$ in $m \angle 3=3 m \angle 4+4$.

$$
\begin{aligned}
m \angle B & =3(m \angle 4)+4 \\
& =3(44)+4 \\
& =132+4 \\
& =136
\end{aligned}
$$

ANSWER:
$m \angle 3=136 ; m \angle 4=44$

## ALGEBRA Use the figure below.


29. If $m \angle K N L=6 x-4$ and $m \angle L N M=4 x+24$, find the value of $x$ so that $\angle K N M$ is a right angle.

## SOLUTION:

In the figure, $m \angle K N L+m \angle L N M=m \angle K N M$.
Since $\angle K N M$ is a right angle, $m \angle K N M=90$.

$$
\begin{aligned}
m \angle K N L+m \angle L N M & =m \angle K N M & & \text { Def. of Right Angle. } \\
(6 x-4)+(4 x+24) & =90 & & \text { Substitution. } \\
10 x+20 & =90 & & \text { Addition. } \\
10 x+20-20 & =90-20 & & -20 \text { from each side. } \\
10 x & =70 & & \text { Simplify. } \\
\frac{10 x}{10} & =\frac{70}{10} & & \div \text { each side by } 10 . \\
x & =7 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
7
30. If $m \angle J N P=3 x-15$ and $m \angle J N L=5 x+59$, find the value of $x$ so that $\angle J N P$ and $\angle J N L$ are supplements of each other.

## SOLUTION:

Supplementary angles are two angles with measures that have a sum of 180 . Then, $m \angle J N P+m \angle J N L=180$.

$$
\begin{aligned}
m \angle J N P+m \angle J N L & =180 & & \text { Def. of Supplem entary Angles. } \\
(3 x-15)+(5 x+59) & =180 & & \text { Substitution. } \\
8 x+44 & =180 & & \text { Simplify. } \\
8 x+44-44 & =180-44 & & \text { Subtract } 44 \text { from each side. } \\
8 x & =136 & & \text { Simplify. } \\
\frac{8 x}{8} & =\frac{136}{8} & & \text { Divide each side by } 8 . \\
x & =17 & & \text { Simplify. }
\end{aligned}
$$

## ANSWER:

## 1-5 Angle Relationships

31. If $m \angle L N M=8 x+12$ and $m \angle J N L=12 x-32$, find $m \angle J N P$.

## SOLUTION:

The angles in a linear pair are supplementary. So, $m \angle L N M+m \angle J N L=180$.

$$
\begin{aligned}
m \angle L N M+m \angle J N L & =180 & & \text { Def. of Linear Pair. } \\
(8 x+12)+(12 x-32) & =180 & & \text { Substitution. } \\
20 x-20 & =180 & & \text { Simplify. } \\
20 x-20+20 & =180+20 & & +20 \text { to each side. } \\
20 x & =200 & & \text { Simplify. } \\
\frac{20 x}{20} & =\frac{200}{20} & & \div \text { each side by } 20 . \\
x & =10 & & \text { Simplify. }
\end{aligned}
$$

$\angle L N M$ and $\angle J N P$ are vertical angles. Since the vertical angles are congruent, $m \angle L N M=m \angle J N P$.
Substitute $x=10$ in $m \angle L N M=8 x+12$.
$m \angle L N M=8(10)+12$
$=92$
So, $\angle J N P=92$.
ANSWER:
92

## 1-5 Angle Relationships

32. If $m \angle J N P=2 x+3, m \angle K N L=3 x-17$, and $m \angle K N J=3 x+34$, find the measure of each angle.

## SOLUTION:

In the figure, $m \angle K N L+m \angle J N P+m \angle K N J=180$.

$$
\begin{aligned}
m \angle K N L+m \angle J N P+m \angle K N J & =180 & & \text { Def. of Supplem entary Angles. } \\
(3 x-17)+(2 x+3)+(3 x+34) & =180 & & \text { Substitution. } \\
8 x+20 & =180 & & \text { Simplify. } \\
8 x+20-20 & =180-20 & & \text { Subtract } 20 \text { from each side. } \\
8 x & =160 & & \text { Simplify. } \\
\frac{8 x}{8} & =\frac{160}{8} & & \text { Divide each side by } 8 . \\
x & =20 & & \text { Simplify. }
\end{aligned}
$$

Find $m \angle J N P$.
Substitute $x=20$ in $m \angle J N P=2 x+3$.

$$
m \angle J N P=2(20)+3
$$

$$
=43
$$

Find $m \angle K N L$.
Substitute $x=20$ in $m \angle K N L=3 x-17$.

$$
\begin{aligned}
m \angle K N L & =3(20)-17 \\
& =43
\end{aligned}
$$

Find $m \angle K N J$.
Substitute $x=20$ in $m \angle K N J=3 x+34$.
$m \angle K N J=3(20)+34$

$$
=94
$$

ANSWER:
$m \angle J N P=43 ; m \angle K N L=43 ; m \angle K N J=94$

## 1-5 Angle Relationships

33. PHYSICS As a ray of light meets a mirror, the light is reflected. The angle at which the light strikes the mirror is the angle of incidence. The angle at which the light is reflected is the angle of reflection. The angle of incidence and the angle of reflection are congruent. In the diagram below, if $m \angle R M I=106$, find the angle of reflection and $m$ $\angle R M J$.


## SOLUTION:

The angle of reflection and the angle of incidence are congruent.
So, $m \angle R M N=m \angle N M I$.
In the figure, $m \angle R M N+m \angle N M I=m \angle R M I$.
Substitute.

$$
\begin{aligned}
m \angle R M N+m \angle N M I & =m \angle R M I & & \text { Def. of Adjacent } \angle \mathrm{s} . \\
m \angle R M N+m \angle R M N & =106 & & \text { Substitution. } \\
2 m \angle R M N & =106 & & \text { Simplify. } \\
\frac{2 m \angle R M N}{2} & =\frac{106}{2} & & \div \text { each side by } 2 . \\
m \angle R M N & =53 & & \text { Simplify. }
\end{aligned}
$$

The angle of reflection measures $53^{\circ}$.
In the figure, $m \angle R M N+m \angle R M J=90$.

$$
\begin{aligned}
m \angle R M N+m \angle R M J & =90 & & \text { Def. of C om plementary } \angle \mathrm{s} . \\
53+m \angle R M J & =90 & & \text { Substitution. } \\
53-53+m \angle R M J & =90-53 & & -53 \text { from each side. } \\
m \angle R M J & =37 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
53; 37

## 1-5 Angle Relationships

34. ALGEBRA Rays $A B$ and $B C$ are perpendicular. Point $D$ lies in the interior of $\angle A B C$. If $m \angle A B D=3 r+5$ and $m \angle D B C=5 r-27$, find $m \angle A B D$ and $m \angle D B C$.

## SOLUTION:

$m \angle A B D+m \angle D B C=m \angle A B C$. Here, $m \angle A B C=90$.


$$
\begin{aligned}
m \angle A B D+m \angle D B C & =m \angle A B C & & \text { Def. of Adjacent Angles. } \\
(3 r+5)+(5 r-27) & =90 & & \text { Substitution. } \\
8 r-22 & =90 & & \text { Simplify. } \\
8 r-22+22 & =90+22 & & \text { Add } 22 \text { to each side. } \\
8 r & =112 & & \text { Simplify. } \\
\frac{8 r}{8} & =\frac{112}{8} & & \text { Divide each side by } 8 . \\
r & =14 & & \text { Simplify. }
\end{aligned}
$$

Find $m \angle A B D$.
Substitute $r=14$ in $m \angle A B D=3 r+5$.

$$
\begin{aligned}
m \angle A B D & =3(14)+5 \\
& =42+5 \\
& =47
\end{aligned}
$$

Find $m \angle D B C$.
Substitute $r=14$ in $m \angle D B C=5 r-27$.
$m \angle D B C=5 r-27$
$=5(14)-27$
$=70-27$
$=43$
ANSWER:
$m \angle A B D=47 ; m \angle D B C=43$

## 1-5 Angle Relationships

35. ALGEBRA $\overrightarrow{W X}$ and $\overrightarrow{Y Z}$ intersect at point $V$. If $m \angle W V Y=4 a+58$ and $m \angle X V Y=2 b-18$, find the values of $a$ and $b$ so that $\overrightarrow{W X}$ is perpendicular to $\overrightarrow{Y Z}$.

## SOLUTION:

Since $\overrightarrow{W X}$ and $\overrightarrow{Y Z}$ intersect at point $V$ and $\overrightarrow{W X}$ is perpendicular to $\overrightarrow{Y Z}, m \angle W V Y=90$ and $m \angle X V Y=90$.


So, $a$ is 8 and $b$ is 54 .
ANSWER:
$a=8 ; b=54$

## Determine whether each statement can be assumed from the figure. Explain.


36. $\angle 4$ and $\angle 7$ are vertical angles.

## SOLUTION:

$\angle 4$ and $\angle 7$ are nonadjacent angles and formed by two intersecting lines.
So, $\angle 4$ and $\angle 7$ are vertical angles.
The answer is "Yes".
ANSWER:
Yes; the angles are nonadjacent and are formed by two intersecting lines.
37. $\angle 4$ and $\angle 8$ are supplementary.

## SOLUTION:

Since $\angle 4$ and $\angle 8$ form a linear pair, they are supplementary.
The answer is "Yes".
ANSWER:
Yes; the angles form a linear pair.
38. $p \perp t$

## SOLUTION:

Since the intersection of the lines $p$ and $t$ is a right angle, they are perpendicular. The answer is "Yes".

ANSWER:
Yes; the intersection of the two lines is a right angle.
39. $\angle 3 \cong \angle 6$

## SOLUTION:

From the figure, $\angle 3$ and $\angle 6$ are adjacent. Since $\angle 5$ is a right angle, $\angle 3$ and $\angle 6$ will be complementary. This determines that both angles are acute. However, unless we know that the larger angle was bisected to form $\angle 3$ and $\angle 6$, the measures of $\angle 3$ and $\angle 6$ are unknown. So, we cannot say $\angle 3 \cong \angle 6$.
The answer is "No".
ANSWER:
No; the measures of each angle are unknown.

## 1-5 Angle Relationships

40. $\angle 5 \cong \angle 3+\angle 6$

## SOLUTION:

In the figure, $m \angle 3+m \angle 6=90$ and $m \angle 5=90$.
$m \angle 5=m \angle 3+m \angle 6$.
So, $\angle 5 \cong \angle 3+\angle 6$.
The answer is "Yes".

## ANSWER:

Yes; $m \angle 5=90$ since it is a right angle, and $m \angle 3+m \angle 6=90$ since it is a right angle.
41. $\angle 5$ and $\angle 7$ form a linear pair.

## SOLUTION:

A linear pair is a pair of adjacent angles with non-common sides that are opposite rays. $\angle 5$ and $\angle 7$ do not form a linear pair, since they are not adjacent angles.

ANSWER:
No; the angles are not adjacent.
42. CCSS ARGUMENTS In the diagram of the pruning shears shown, $m \angle 1=m \angle 3$. What conclusion can you reach about the relationship between $\angle 4$ and $\angle 2$ ? Explain.


## SOLUTION:

Vertical angles are two nonadjacent angles formed by two intersecting lines. Here, $\angle 1$ and $\angle 2$ are vertical angles, and $\angle 3$ and $\angle 4$ are vertical angles.
So, $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$.
We are given that $m \angle 1=m \angle 3$.
So, $\angle 1 \cong \angle 3$.
Substitute $\angle 1 \cong \angle 3$ in $\angle 1 \cong \angle 2$.
$\angle 3 \cong \angle 2$
Now, substitute $\angle 3 \cong \angle 2$ in $\angle 3 \cong \angle 4$.
$\angle 2 \cong \angle 4$
So, $m \angle 2=m \angle 4$.
ANSWER:
$m \angle 2=m \angle 4$; We are given that $m \angle 1=m \angle 3$. Since $\angle 1$ and $\angle 2$ are vertical angles, $\angle 1 \cong \angle 2$. So $m \angle 1=m$ $\angle 2$. Since $\angle 3$ and $\angle 4$ are vertical angles, $\angle 3 \cong \angle 4$. So $m \angle 3=m \angle 4$. Since $m \angle 1=m \angle 2$ and $m \angle 1=m \angle 3$, we can say that $m \angle 2=m \angle 3$. Since $m \angle 3=m \angle 4$ and $m \angle 2=m \angle 3$, we can say that $m \angle 2=m \angle 4$.

FLIGHT The wings of the aircraft shown can pivot up to $60^{\circ}$ in either direction from the perpendicular position.

43. Identify a pair of vertical angles.

## SOLUTION:

Vertical angles are two nonadjacent angles formed by two intersecting lines.
$\angle 1$ and $\angle 3$ are vertical angles. So are $\angle 2$ and $\angle 4$.
ANSWER:
Sample answer: $\angle 1$ and $\angle 3$
44. Identify two pairs of supplementary angles.

## SOLUTION:

Sample answer: $\angle 1$ and $\angle 2$ form a linear pair, so the angles are supplementary.
$\angle 3$ and $\angle 4$ form a linear pair, so the angles are supplementary.
So, two pairs of supplementary angles are $\angle 1$ and $\angle 2 ; \angle 3$ and $\angle 4$.
ANSWER:
Sample answer: $\angle 1$ and $\angle 2 ; \angle 3$ and $\angle 4$
45. If $m \angle 1=110$, what is $m \angle 3$ ? $m \angle 4$ ?

## SOLUTION:

In the figure, $\angle 1$ and $\angle 3$ are vertical angles. $\angle 1 \cong \angle 3$, since vertical angles are congruent.
By the definition of congruent angles, $m \angle 1=m \angle 3$.
Given that $m \angle 1=110$, then $m \angle 3=110$.

Since $\angle 1$ and $\angle 4$ form a linear pair, $\angle 1$ and $\angle 4$ are supplementary angles.

$$
\begin{aligned}
m \angle 1+m \angle 4 & =180 & & \text { Def. of Supplem entary Angles } \\
110+m \angle 4 & =180 & & \text { Substitution. } \\
110-110+m \angle 4 & =180-110 & & \text { Subtract110 from each side. } \\
m \angle 4 & =70 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
110; 70
46. What is the minimum possible value for $m \angle 2$ ? the maximum?

## SOLUTION:

When the wing is in its normal position, it is perpendicular to the body of the plane.
The wing can be pivoted up to $60^{\circ}$ in either direction.
If the wing to the left side of the plane is pivoted $60^{\circ}$ forward, then $m \angle 1=90+60$ or 150 and $m \angle 2=180-150$ or 30.

If the wing to the left side of the plane is pivoted $60^{\circ}$ backwards, then $m \angle 1=90-60$ or 30 and $m \angle 2=180-30$ or 150.

Therefore, the minimum possible value for $m \angle 2$ is 30 and the maximum possible value is 150 .
ANSWER:
30; 150
47. Is there a wing position in which none of the angles are obtuse? Explain.

## SOLUTION:

Sample answer: If the wing is not rotated at all, then the wing is perpendicular to the body of the plane. So, all of the angles are right angles, which are neither acute nor obtuse. So, the answer is "Yes".

ANSWER:
Sample answer: Yes; if the wing is not rotated at all, then all of the angles are right angles, which are neither acute nor obtuse.
48. MULTIPLE REPRESENTATIONS In this problem, you will explore the relationship between the sum of the interior angles of a triangle and the angles vertical to them.
a. GEOMETRIC Draw three sets of three intersecting lines and label each as shown.
b. TABULAR For each set of lines, measure and
record $m \angle 1, m \angle 2$, and $m \angle 3$ in a table. Record $m \angle 1+m \angle 2+m \angle 3$ in a separate column.

## 1-5 Angle Relationships

c. VERBAL Explain how you can find $m \angle 4, m \angle 5$, and $m \angle 6$ when you know $m \angle 1, m \angle 2$, and $m \angle 3$.
d. ALGEBRAIC Write an equation that relates $m \angle 1+m \angle 2+m \angle 3$ to $m \angle 4+m \angle 5+m \angle 6$. Then use substitution to write an equation that relates $m \angle 4+m \angle 5+m \angle 6$ to an integer.


## SOLUTION:

Sample answers:
a. Draw three intersecting lines and label them.

b. Assume the measures for $\angle 1, \angle 2$, and $\angle 3$, then find $m \angle 1+m \angle 2+m \angle 3$. Record those values in a table.

| Set | $\mathbf{m} \angle \mathbf{1}$ | $\mathbf{m} \angle \mathbf{2}$ | $\mathbf{m} \angle \mathbf{3}$ | $\mathbf{m} \angle \mathbf{1}+$ <br> $\mathbf{m} \angle \mathbf{2}+$ <br> $\mathbf{m} \angle \mathbf{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 30 | 60 | 90 | $\mathbf{1 8 0}$ |
| 2 | 45 | 55 | 80 | $\mathbf{1 8 0}$ |
| 3 | 20 | 60 | 100 | $\mathbf{1 8 0}$ |

c. Vertical angles are two nonadjacent angles formed by two intersecting lines.
$m \angle 4=m \angle 1, m \angle 5=m \angle 2$, and $m \angle 6=m \angle 3$, since they are pairs of vertical angles.
d. The sum of the measures of angles in a triangle is 180 . So, $m \angle 1+m \angle 2+m \angle 3=180$.

Refer part $\mathbf{c}$.
$m \angle 1+m \angle 2+m \angle 3=m \angle 4+m \angle 5+m \angle 6$
Therefore, $m \angle 4+m \angle 5+m \angle 6=180$.
ANSWER:
a. Sample answer:


## 1-5 Angle Relationships

b. Sample answer:

| Set | $\boldsymbol{m} \angle \mathbf{1}$ | $\boldsymbol{m} \angle \mathbf{2}$ | $\boldsymbol{m} \angle \mathbf{3}$ | $\mathbf{m} \angle \mathbf{1}+$ <br> $\mathbf{m} \angle \mathbf{2}+$ <br> $\boldsymbol{m} \angle \mathbf{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 30 | 60 | 90 | 180 |
| 2 | 45 | 55 | 80 | 180 |
| 3 | 20 | 60 | 100 | 180 |

c. Sample answer: Explain how you can find $m \angle 4=m \angle 1, m \angle 5=m \angle 2$, and $m \angle 6=m \angle 3$ because they are pairs of vertical angles.
d. Sample answer; $m \angle 1+m \angle 2+m \angle 3=m \angle 4+m \angle 5+m \angle 6 ; m \angle 4+m \angle 5+m \angle 6=180$.
49. CCSS REASONING Are there angles that do not have a complement? Explain.

## SOLUTION:

Complementary angles are two angles with measures that have a sum of 90 . By definition, the measure of an angle must be greater than 0 . So, each angle must have a measure less than 90 . Thus, each angle in a complementary pair is an acute angle.
Angles that have a measure greater than or equal to 90 can not have a complement, since the addition of any other angle measure will produce a sum greater than 90 . Therefore, right angles and obtuse angles do not have a complement.

ANSWER:
Yes; angles that are right or obtuse do not have complements because their measures are greater than or equal to 90 .
50. OPEN ENDED Draw a pair of intersecting lines that forms a pair of complementary angles. Explain your reasoning.

## SOLUTION:

Complementary angles are two angles with measures that have a sum of 90 .


Two $45^{\circ}$ angles are complementary, since $45+45=90$.
ANSWER:


Two $45^{\circ}$ angles are complementary.

## 1-5 Angle Relationships

51. CHALLENGE If a line, line segment, or ray is perpendicular to a plane, it is perpendicular to every line, line segment, or ray in the plane that intersects it.
a. If a line is perpendicular to each of two intersecting lines at their point of intersection, then the line is perpendicular to the plane determined by them. If line $a$ is perpendicular to line $\ell$ and line $m$ at point $X$, what must also be true?
b. If a line is perpendicular to a plane, then any line perpendicular to the given line at the point of intersection with the given plane is in the given plane. If line $a$ is perpendicular to plane $P$ and line $m$ at point $X$, what must also be true? c. If a line is perpendicular to a plane, then every plane containing the line is perpendicular to the given plane. If line $a$ is perpendicular to plane $P$, what must also be true?


## SOLUTION:

a. Since line $\ell$ and line $m$ are contained in plane $P$, line $a$ is perpendicular to plane $P$.
b. Since line $m$ is perpendicular to line $a$ at point $X$, line $m$ is in plane $P$.
c. Since line $a$ is perpendicular to plane $P$, any plane containing line $a$ is perpendicular to plane $P$.

## ANSWER:

a. Line $a$ is perpendicular to plane $P$.
b. Line $m$ is in plane $P$.
c. Any plane containing line $a$ is perpendicular to plane $P$.
52. WRITING IN MATH Describe three different ways you can determine that an angle is a right angle.

## SOLUTION:

Sample answer: We can determine a right angle using three different ways. You can determine if an angle is right if it is marked with a right angle symbol, if the angle is a vertical pair with a right angle, or if the angle forms a linear pair with a right angle.

ANSWER:
Sample answer: You can determine if an angle is right if it is marked with a right angle symbol, if the angle is a vertical pair with a right angle, or if the angle forms a linear pair with a right angle.

## 1-5 Angle Relationships

53. What is $m \angle R M S$ in the figure below?


A 26
B 38
C 52
D 128

## SOLUTION:

$\angle P M T$ and $\angle S M T$ are supplementary, since $m \angle P M T+m \angle S M T=180$.
Given that $m \angle P M T=128$.

$$
\begin{aligned}
m \angle P M T+m \angle S M T & =180 & & \text { Def. of Supplem entary Angles. } \\
128+m \angle \mathrm{SMT} & =180 & & \text { Substitution. } \\
128-128+m \angle \mathrm{SMT} & =180-128 & & -128 \text { from each side. } \\
m \angle \mathrm{SMT} & =52 & & \text { Simplify. }
\end{aligned}
$$

In the figure, $m \angle Q M R+m \angle R M S+m \angle S M T=180$.
Substitute $m \angle S M T=52$ and $m \angle Q M R=90$.

$$
\begin{aligned}
m \angle Q M R+m \angle R M S+m \angle S M T & =180 & & \text { Def. of Supplem entary Angles } \\
90+m \angle R M S+52 & =180 & & \text { Substitution. } \\
m \angle R M S+142 & =180 & & \text { Addition. } \\
m \angle R M S+142-142 & =180-142 & & \text { Subtract } 142 \text { from each side. } \\
m \angle R M S & =38 & & \text { Subtraction. }
\end{aligned}
$$

So, the correct option is B.
ANSWER:
B
54. EXTENDED RESPONSE For a fundraiser, a theater club is making 400 cookies. They want to make twice as many chocolate chip as peanut butter cookies and three times as many peanut butter as oatmeal raisin cookies. Determine how many of each type of cookie the theater club will make. Show your work.

## SOLUTION:

Let $x$ be the number of oatmeal raisin cookies. Then the number of peanut butter cookies is $3 x$, and the number of chocolate chip cookies is $2(3 x)=6 x$.

The total number of cookies is $x+3 x+6 x=400$.
Solve for $x$.
$10 x=400$
Divide each side by 10 .
$x=40$
So, they need 40 oatmeal raisin, $3(40$ ) or 120 peanut butter and 6(40) or 240 chocolate chip cookies.

## ANSWER:

240 chocolate chip; 120 peanut butter; 40 oatmeal raisin; Sample answer: Let $x=$ the number of oatmeal raisin cookies. The number of peanut butter cookies equals $3 x$. The number of chocolate chip cookies equals $2(3 x)=6 x$. The total number of cookies is $x+3 x+6 x=400$. Solving for $x$, you get $x=40$. So they need 40 oatmeal raisin, 3(40) or 120 peanut butter and 6(40) or 240 chocolate chip cookies.
55. ALGEBRA Which inequality is graphed below?


F $y>-\frac{1}{3} x+1$
G $y<-\frac{1}{3} x+1$
H $y \geq-\frac{1}{3} x+1$
J $y \leq-\frac{1}{3} x+1$

## SOLUTION:

The graph has a solid line, so the inequality should have either the $\geq$ or $\leq$ symbol, which rules out options F and G. The inequality symbol in the equation should be $\leq$, since the graph has been shaded below the $y$-axis. So, the correct option is J.

ANSWER:

## 1-5 Angle Relationships

56. SAT/ACT One third of a number is three more than one fourth the same number. What is the number?

A 3
B 12
C 36
D 42
E 48

## SOLUTION:

Let $x$ be the number.

$$
\begin{aligned}
\frac{1}{3} x & =3+\frac{1}{4} x & & \text { Original equation } \\
\frac{1}{3} x-\frac{1}{4} x & =3+\frac{1}{4} x-\frac{1}{4} x & & \text { Subtract } \frac{1}{4} x \text { from each side. } \\
\frac{4}{12} x-\frac{3}{12} x & =3 & & \text { Rewrite fractions with comm on denom inators. } \\
\frac{1}{12} x & =3 & & \text { Simplify. } \\
12\left(\frac{1}{12} x\right) & =12(3) & & \text { Multiply each side by } 12 . \\
x & =36 & & \text { Simplify. }
\end{aligned}
$$

The correct option is C .
ANSWER:
C

Copy the diagram shown and extend each ray. Classify each angle as right, acute, or obtuse. Then use a protractor to measure the angle to the nearest degree.

57. $\angle A B C$

## SOLUTION:



Using the corner of a sheet of paper, $\angle A B D$ in the figure appears to be a right angle, so $m \angle A B D=90$.
Point $C$ on angle $\angle A B C$ lies on the exterior angle of right angle $\angle A B D$, so $\angle A B C$ is an obtuse angle. Using a protractor, you will find that $m \angle A B C=125$.

ANSWER:
125, obtuse
58. $\angle D B C$

SOLUTION:


If the left-hand corner of a sheet of paper in set on $B$ and the edge of the paper is aligned with $\overrightarrow{B D}$, then point $C$ is in the interior of the right angle formed by the paper. So, the measure of $\angle D B C$ must be less than 90 . Therefore, $\angle D B C$ is an acute angle. Use a protractor to find that $m \angle D B C=35$.

ANSWER:
35, acute
59. $\angle A B D$

## SOLUTION:



If the corner of a sheet of paper is placed at $B$ and one edge of the paper is aligned with $\overrightarrow{A B}$, the other edge of the paper appears to be aligned with $\overrightarrow{B D}$. This would mean that $\angle A B D$ is probably a right angle Using a protactor, $m \angle A B D=90$.

ANSWER:
90 , right
Find the coordinates of the midpoint of a segment with the given endpoints.
60. $P(3,-7), Q(9,6)$

## SOLUTION:

If $\overline{P Q}$ has endpoints at $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in the coordinate plane, then the midpoint $M$ of $\overline{P Q}$ is $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Substitute $x_{1}=3, y_{1}=-7, x_{2}=9$, and $y_{2}=6$ in $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

$$
\begin{array}{rlr}
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & \text { Midpoint Form ula } \\
=\left(\frac{3+9}{2}, \frac{-7+6}{2}\right) & \text { Substitution. } \\
& =\left(\frac{12}{2}, \frac{-1}{2}\right) & \text { Addition. } \\
& =\left(6,-\frac{1}{2}\right) & \text { Division. }
\end{array}
$$

The midpoint of $\overline{P Q}$ is $\left(6,-\frac{1}{2}\right)$.
ANSWER:
$\left(6,-\frac{1}{2}\right)$
$61 . A(-8,-5), B(1,7)$

## SOLUTION:

If $\overline{A B}$ has endpoints at $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the coordinate plane, then the midpoint $M$ of $\overline{A B}$ is $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substitute $x_{1}=-8, y_{1}=-5, x_{2}=1$, and $y_{2}=7$ in $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad$ Midpoint Formula $=\left(\frac{-8+1}{2}, \frac{-5+7}{2}\right) \quad$ Substitution.
$=\left(\frac{-7}{2}, \frac{2}{2}\right) \quad$ Addition.
$=\left(-3 \frac{1}{2}, 1\right) \quad$ Division.
The midpoint of $\overline{A B}$ is $\left(-3 \frac{1}{2}, 1\right)$.
ANSWER:
$\left(-3 \frac{1}{2}, 1\right)$

## 1-5 Angle Relationships

62. $J(-7,4), K(3,1)$

SOLUTION:
If $\overline{J K}$ has endpoints at $J\left(x_{1}, y_{1}\right)$ and $K\left(x_{2}, y_{2}\right)$ in the coordinate plane, then the midpoint $M$ of $\overline{J K}$ is $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substitute $x_{1}=-7, y_{1}=4, x_{2}=3$, and $y_{2}=1$ in $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad$ Midpoint Formula
$=\left(\frac{-7+3}{2}, \frac{4+1}{2}\right) \quad$ Substitution.
$=\left(\frac{4}{2}, \frac{5}{2}\right) \quad$ Addition.
$=\left(2,2 \frac{1}{2}\right) \quad$ Division.
The midpoint of $\overline{J K}$ is $\left(2,2 \frac{1}{2}\right)$.
ANSWER:
$\left(-2,2 \frac{1}{2}\right)$
63. SNOWBOARDING In the design on the snowboard shown, $\overline{B D}$ bisects $\overline{S N}$ at $R$. If $S N=163$ centimeters, find $R N$.


## SOLUTION:

Since $\overline{B D}$ bisects $\overline{S N}$ at $R, S R=R N$.
In the figure, $S N=S R+R N$.
Given that $S N=163$.
Substitute.
$163=R N+R N$
$163=2 R N$
Divide each side by 2 .
$\frac{163}{2}=\frac{2 R N}{2}$
$81.5=R N$
So, $R N=81.5$ centimeters.
ANSWER:
81.5 cm

Name the congruent sides and angles in each figure.
64.


## SOLUTION:

Segments that have the same measure are called congruent segments. Angles that have the same angle measures are called congruent angles.
Here the segments marked with the same symbol are congruent to each other. Similarly, the angles marked with the same symbol are congruent to each other.
Congruent segments: $\overline{A B} \cong \overline{A C}$
Congruent angles: $\angle B \cong \angle C$
ANSWER:
$\overline{A B} \cong \overline{A C} ; \angle B \cong \angle C$

## 1-5 Angle Relationships

65. 



## SOLUTION:

Segments that have the same measure are called congruent segments. Angles that have the same angle measures are called congruent angles.
Here the segments marked with the same symbol are congruent to each other. Similarly, the angles marked with the same symbol are congruent to each other.
Congruent segments: $\overline{F G} \cong \overline{H J} \cong \overline{J K} \cong \overline{F L}, \overline{G H} \cong \overline{L K}$
Congruent angles: $\angle F \cong \angle J, \angle G \cong \angle H \cong \angle K \cong \angle L$
ANSWER:
$\overline{F G} \cong \overline{H J} \cong \overline{J K} \cong \overline{F L}, \overline{G H} \cong \overline{L K} ;$
$\angle F \cong \angle J, \angle G \cong \angle H \cong \angle K \cong \angle L$
66.


## SOLUTION:

Segments that have the same measure are called congruent segments. Angles that have the same angle measures are called congruent angles.
Here the segments marked with the same symbol are congruent to each other. Similarly, the angles marked with the same symbol are congruent to each other.
Congruent segments: $\overline{N P} \cong \overline{P Q} \cong \overline{Q R} \cong \overline{R S} \cong \overline{S N}$
Congruent angles: $\angle N \cong \angle P \cong \angle Q \cong \angle R \cong \angle S$
ANSWER:

$$
\begin{aligned}
& \overline{N P} \cong \overline{P Q} \cong \overline{Q R} \cong \overline{R S} \cong \overline{S N} ; \\
& \angle N \cong \angle P \cong \angle Q \cong \angle R \cong \angle S
\end{aligned}
$$

## 1-5 Angle Relationships

67. 



## SOLUTION:

Segments that have the same measure are called congruent segments. Angles that have the same angle measures are called congruent angles.
Here the segments marked with the same symbol are congruent to each other. Similarly, the angles marked with the same symbol are congruent to each other.
Congruent segments: $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W}$
Congruent angles: $\angle W \cong \angle Y, \angle X \cong \angle Z$
ANSWER:
$\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W} ;$
$\angle W \cong \angle Y, \angle X \cong \angle Z$

