Find the measure of each numbered angle, and name the theorems that justify your work.

1. $m \angle 2=26$

SOLUTION:

The angles $\angle 2$ and $\angle 3$ are complementary, or adjacent angles that form a right angle.
So, $m \angle 2+m \angle 3=90$.
Substitute.

$$
\begin{gathered}
26+m \angle 3=90 \\
m \angle 3=90-26 \\
=64
\end{gathered}
$$

Here, the Complement Theorem has been used.
ANSWER:
$m \angle 1=90, m \angle 3=64$; Comp. Thm.
2. $m \angle 2=x, m \angle 3=x-16$

SOLUTION:

The angles $\angle 2$ and $\angle 3$ are complementary, or adjacent angles that form a right angle.
So, $m \angle 2+m \angle 3=90$.
Substitute.

$$
\begin{aligned}
x+x-16 & =90 \\
2 x-16 & =90 \\
2 x & =106 \\
x & =53
\end{aligned}
$$

So, $m \angle 2=53$ and $m \angle 3=53-16$ or 37 .

Here, the Complement Theorem has been used.
ANSWER:
$m \angle 2=53, m \angle 3=37$; Comp. Thm.

2-8 Proving Angle Relationships

3. $m \angle 4=2 x, m \angle 5=x+9$

SOLUTION:

The angles $\angle 4$ and $\angle 5$ are supplementary or form a linear pair.
So, $m \angle 4+m \angle 5=180$.
Substitute.
$2 x+x+9=180$
$3 x+9=180$
$3 x+9-9=180-9$

$$
3 x=171
$$

$$
x=57
$$

Substitute $x=57$ in $m \angle 4=2 x$ and $m \angle 5=x+9$.

$$
\begin{aligned}
m \angle 4 & =2(57) \\
& =114 \\
m \angle 5 & =57+9 \\
& =66
\end{aligned}
$$

Here, the Supplement Theorem has been used.
ANSWER:
$m \angle 4=114, m \angle 5=66$; Suppl. Thm.
4. $m \angle 4=3(x-1), m \angle 5=x+7$

SOLUTION:

The angles $\angle 4$ and $\angle 5$ are supplementary or form a linear pair.
So, $m \angle 4+m \angle 5=180$.
Substitute.
$3(x-1)+x+7=180$
$3 x-3+x+7=180$
$4 x+4=180$
$4 x=176$
$x=44$
Substitute $x=44$ in $m \angle 4=3(x-1)$ and $m \angle 5=x+7$.
$m \angle 4=3(44-1)$

$$
=3(43)
$$

$$
=129
$$

$m \angle 5=44+7$

$$
=51
$$

Here, the Supplement Theorem has been used.
ANSWER:
$m \angle 4=129, m \angle 5=51 ;$ Suppl. Thm.

2-8 Proving Angle Relationships

5. PARKING Refer to the diagram of the parking lot. Given that $\angle 2 \cong \angle 6$, prove
that $\angle 4 \cong \angle 8$.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles. Use the properties that you have learned about congruent angles and equivalent expressions in algebra to walk through the proof.

Given: $\angle 2 \cong \angle 6$
Prove: $\angle 4 \cong \angle 8$
Proof:
Statements (Reasons)

1. $\angle 2 \cong \angle 6$ (Given)
2. $\angle 2+m \angle 4=180$
$m \angle 6+m \angle 8=180$ (Supplement Theorem)
3. $\angle 2+m \angle 8=180$ (Substitution)
4. $m \angle 2-m \angle 2+m \angle 4=180-m \angle 2$
$m \angle 2-m \angle 2+m \angle 8=180-m \angle 2$ (Subtraction Property)
5. $m \angle 4=180-m \angle 2$
$m \angle 8=180-m \angle 2$ (Subtraction Property)
6. $m \angle 4=m \angle 8$ (Substitution)
7. $\angle 4 \cong \angle 8$ (Definition of congruent angles)

ANSWER:
Given: $\angle 2 \cong \angle 6$
Prove: $\angle 4 \cong \angle 8$
Proof:
Statements (Reasons)

1. $\angle 2 \cong \angle 6$ (Given)
2. $\angle 2+m \angle 4=180, m \angle 6+m \angle 8=180$ (Suppl. Thm.)
3. $\angle 2+m \angle 8=180$ (Subs.)
4. $m \angle 2-m \angle 2+m \angle 4=180-m \angle 2, m \angle 2-m \angle 2+m \angle 8=180-m \angle 2$ (Subt. Prop.)
5. $m \angle 4=180-m \angle 2, m \angle 8=180-m \angle 2$ (Subt. Prop.)
6. $m \angle 4=m \angle 8$ (Subs.)
7. $\angle 4 \cong \angle 8$ (Def. $\cong \angle \boldsymbol{s}$)
8. PROOF Copy and complete the proof of one case of Theorem 2.6.

Given: $\angle 1$ and $\angle 3$ are complementary.
$\angle 2$ and $\angle 3$ are complementary.

2-8 Proving Angle Relationships

Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
a. $\angle 1$ and $\angle 3$ are complementary.	a. \quad ?
$\angle 2$ and $\angle 3$ are complementary.	b. $_$?
b. $m \angle 1+m \angle 3=90 ;$	c. ? ?
$m \angle 2+m \angle 3=90$	d. Reflexive Property
c. $m \angle 1+m \angle 3=m \angle 2+m \angle 3$	e. ? ?
d. \quad f. \quad e. $m \angle 1=m \angle 2$	

SOLUTION:

The 1st row contains the given information about complementary angles..
The 2nd row is uses the definition of complementary angles.
The 3rd row use substitution to write the two statements as one.
The 4th row look ahead at the segment for Row 4 to see what is changes, so you can identify the statement for reflexive.
The 5 th row is subtraction is used to remove $\angle 3$ from each side.
The 6th row is replaces or substitutes angles with congruent angles.

Statements	Reasons
a. $\angle 1$ and $\angle 3$ are complementary.	a. Given
$\angle 2$ and $\angle 3$ are complementary.	D. Definition of complementary angles
b. $m \angle 1+m \angle 3=90 ;$	c. Substitution
$m \angle 2+m \angle 3=90$	d. Reflexive Property
c. $m \angle 1+m \angle 3=m \angle 2+m \angle 3$	e. Subtraction Property
d. $m \angle 3=m \angle 3$	f. Definition of congruent angles
e. $m \angle 1=m \angle 2$	

ANSWER:

2-8 Proving Angle Relationships

Statements	Reasons
a. $\angle 1$ and $\angle 3$ are complementary. $\angle 2$ and $\angle 3$ are complementary. b. $\begin{aligned} & m \angle 1+m \angle 3=90 \\ & m \angle 2+m \angle 3=90 \end{aligned}$ c. $m \angle 1+m \angle 3=m \angle 2+m \angle 3$ d. \qquad $m \angle 3=m \angle 3$ e. $m \angle 1=m \angle 2$ f. $\angle 1 \cong \angle 2$	a. \qquad Given b. \qquad ? Def. of comp. $\&$ c. \qquad ? Subs. d. Reflexive Property e. \qquad Subt. Prop. f. \qquad Def $\cong \measuredangle$

7. PROOF Write a two-column proof.

Given: $\angle 4 \cong \angle 7$
Prove: $\angle 5 \cong \angle 6$

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles. Use the properties that you have learned about congruent angles and equivalent expressions in algebra to walk through the proof.
Given: $\angle 4 \cong \angle 7$
Prove: $\angle 5 \cong \angle 6$
Proof:
Statements(Reasons)

1. $\angle 4 \cong \angle 7$ (Given)
2. $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$ (Vertical angles Theorem)
3. $\angle 7 \cong \angle 5$ (Substitution)
4. $\angle 5 \cong \angle 6$ (Substitution)

ANSWER:
Given: $\angle 4 \cong \angle 7$
Prove: $\angle 5 \cong \angle 6$
Proof:
Statements (Reasons)

1. $\angle 4 \cong \angle 7$ (Given)
2. $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$ (Vert. $\angle s$ Thm.)
3. $\angle 7 \cong \angle 5$ (Subs.)
4. $\angle 5 \cong \angle 6$ (Subs.)

2-8 Proving Angle Relationships

Find the measure of each numbered angle, and name the theorems used that justify your work.

SOLUTION:

In the figure, $m \angle 5+90+m \angle 6=180$.
Given that $m \angle 5=m \angle 6$.
So, $m \angle 5+90+m \angle 5=180$.
$2 m \angle 5+90=180$
$2 m \angle 5=90$
$m \angle 5=45$
We know that $m \angle 5=m \angle 6$.
So, $m \angle 6=45$.
Here, the Congruent Supplements Theorem has been used.
ANSWER:
$m \angle 5=m \angle 6=45$ (\cong Supp. Thm.)

2-8 Proving Angle Relationships

9. $\angle 2$ and $\angle 3$ are complementary.
$\angle 1 \cong \angle 4$ and $m \angle 2=28$

SOLUTION:

Since $\angle 2$ and $\angle 3$ are complementary, $m \angle 2+m \angle 3=90$.
Substitute $m \angle 2=28$.

$$
28+m \angle 3=90
$$

$$
m \angle 3=62
$$

In the figure, $m \angle 1+m \angle 2+m \angle 3+m \angle 4=180$.
Substitute.

$$
\begin{aligned}
m \angle 1+90+m \angle 4 & =180 \\
m \angle 1+m \angle 4 & =90 \\
m \angle 1+m \angle 1 & =90(\angle 1 \cong \angle 4) \\
2 m \angle 1 & =90 \\
m \angle 1 & =45
\end{aligned}
$$

So, $m \angle 1=45$ and $m \angle 4=45$.
Here, the Congruent Complements and Congruent Supplements Theorems have been used.
ANSWER:
$m \angle 3=62, m \angle 1=m \angle 4=45(\cong$ Comp. and Supp. Thm.)

2-8 Proving Angle Relationships

10. $\angle 2$ and $\angle 4$, and $\angle 4$ and $\angle 5$ are supplementary. $m \angle 4=105$

SOLUTION:

Since $\angle 2$ and $\angle 4$ are supplementary angles, $m \angle 2+m \angle 4=180$. Since $\angle 4$ and $\angle 5$ are supplementary angles, $m \angle 4+m \angle 5=180$.
Therefore, $m \angle 2=m \angle 5$.
Substitute $m \angle 4=105$.

$$
\begin{aligned}
m \angle 2+105 & =180 \\
m \angle 2 & =75
\end{aligned}
$$

So, $m \angle 5=75$.
We know that $m \angle 2+m \angle 3=180$.
Substitute.

$$
\begin{aligned}
75+m \angle 3 & =180 \\
m \angle 3 & =105
\end{aligned}
$$

Here, the Congruent Supplements Theorem has been used.
ANSWER:
$m \angle 2=75, m \angle 3=105, m \angle 5=75(\cong$ Supp. Thm. $)$

2-8 Proving Angle Relationships

Find the measure of each numbered angle and name the theorems used that justify your work.
$m \angle 9=3 x+12$
11.
$m \angle 10=x-24$

SOLUTION:

The angles $\angle 9$ and $\angle 10$ are supplementary or form a linear pair.
So, $m \angle 9+m \angle 10=180$.
Substitute.

$$
\begin{aligned}
3 x+12+x-24 & =180 \\
4 x-12 & =180 \\
4 x & =192 \\
x & =48
\end{aligned}
$$

Substitute $x=48$ in $m \angle 9=3 x+12$ and $m \angle 10=x-24$.

$$
\begin{aligned}
m \angle 9 & =3(48)+12 \\
& =144+12 \\
& =156 \\
m \angle 10 & =48-24 \\
& =24
\end{aligned}
$$

Here, the Supplement Theorem has been used.
ANSWER:
$m \angle 9=156, m \angle 10=24$ (Supp. Thm.)

2-8 Proving Angle Relationships

SOLUTION:

Since $\angle 3$ and $\angle 4$ are vertical angles, they are congruent. $m \angle 3=m \angle 4$

Substitute.

$$
\begin{aligned}
2 x+23 & =5 x-112 \\
2 x+23-5 x & =5 x-112-5 x \\
23-3 x & =-112 \\
23-3 x-23 & =-112-23 \\
-3 x & =-135 \\
\frac{-3 x}{-33} & =\frac{-135}{-3} \\
x & =45
\end{aligned}
$$

Substitute $x=45$ in $m \angle 3=2 x+23$.

$$
\begin{aligned}
m \angle 3 & =2(45)+23 \\
& =113
\end{aligned}
$$

Substitute $x=45$ in $m \angle 4=5 x-112$.

$$
\begin{aligned}
m \angle 4 & =5(45)-112 \\
& =113
\end{aligned}
$$

Here, the Vertical Angles Theorem has been used.
ANSWER:
$m \angle 3=113, m \angle 4=113$ (Vert. $\angle s$ Thm.)

2-8 Proving Angle Relationships

SOLUTION:

In the figure, $m \angle 6+m \angle 7=180$ and $m \angle 7+m \angle 8=180$.
By congruent supplementary theorem, $m \angle 6=m \angle 8$.
Since $\angle 6$ and $\angle 8$ are vertical angles, they are congruent.
$m \angle 6=m \angle 8$
$m \angle 6+m \angle 7=180$

Substitute.

$$
\begin{aligned}
2 x-21+3 x-34 & =180 \\
5 x-55 & =180 \\
5 x & =235 \\
x & =47
\end{aligned}
$$

Substitute $x=47$ in $m \angle 6=2 x-21$.

$$
\begin{aligned}
m \angle 6 & =2(47)-21 \\
& =94-21 \\
& =73
\end{aligned}
$$

So, $m \angle 8=73$.
We know that $m \angle 6+m \angle 7=180$.
$73+m \angle 7=180$
$m \angle 7=103$
Here, Congruent Supplements Theorem and the Vertical Angles Theorem have been used.
ANSWER:
$m \angle 6=73, m \angle 7=107, m \angle 8=73$ (\cong Supp. Thm. and Vert. $\angle s$ Thm.)

2-8 Proving Angle Relationships

PROOF Write a two-column proof.

14. Given: $\angle A B C$ is a right angle.

Prove: $\angle A B D$ and $\angle C B D$ are
complementary.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given a right angle. Use the properties that you have learned about right angles, angle addition, complementary angles, congruent angles and equivalent expressions in algebra to walk through the proof.

Given: $\angle A B C$ is a right angle.
Prove: $\angle A B D$ and $\angle C B D$ are complementary.
Proof:
Statements (Reasons)

1. $\angle A B C$ is a right angle. (Given)
2. $m \angle A B C=90$ (Definition of a right angle)
3. $m \angle A B C=m \angle A B D+m \angle C B D$ (Angle Addition Postulate)
4. $m \angle A B D+m \angle C B D=90$ (Substitution)
5. $\angle A B D$ and $\angle C B D$ are complementary. (Definition of complimentary angles)

ANSWER:
Proof:
Statements (Reasons)

1. $\angle A B C$ is a right angle. (Given)
2. $m \angle A B C=90$ (Def. of rt. angle)
3. $m \angle A B C=m \angle A B D+m \angle C B D$ (\angle Add. Post.)
4. $m \angle A B D+m \angle C B D=90$ (Subs.)
5. $\angle A B D$ and $\angle C B D$ are complementary. (Def. of compl. $\angle s$)

2-8 Proving Angle Relationships

15. Given:. $\angle 5 \cong \angle 6$

Prove: $\angle 4$ and $\angle 6$ are supplementary.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles Use the properties that you have learned about congruent angles and equivalent expressions in algebra to walk through the proof.
Given:. $\angle 5 \cong \angle 6$
Prove: $\angle 4$ and $\angle 6$ are supplementary.
Proof:
Statements (Reasons)

1. $\angle 4 \cong \angle 6$. (Given)
2. $m \angle 4=m \angle 6$ (Definition of Congruent Angles)
3. $\angle 4+\angle 5=180$ (Supplement Theorem)
4. $\angle 6+\angle 5=180$ (Substitution)
5. $\angle 5$ and $\angle 6$ are supplementary. (Definition of supplementary angles)

ANSWER:
Proof:
Statements (Reasons)

1. $\angle 5 \cong \angle 6$ (Given)
2. $m \angle 5=m \angle 6$ (Def. of $\cong \angle s$)
3. $\angle 4$ and $\angle 5$ are supplementary. (Def. of linear pairs)
4. $m \angle 4+m \angle 5=180$ (Def. of supp. $\angle s$)
5. $m \angle 4+m \angle 6=180$ (Subs.)
6. $\angle 4$ and $\angle 6$ are supplementary. (Def. of supp. $\angle s$)

2-8 Proving Angle Relationships

Write a proof for each theorem.

16. Supplement Theorem

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two angles form a linear pair. Use the properties that you have learned about linear pairs, supplementary angles and equivalent expressions in algebra to walk through the proof.
Given: Two angles form a linear pair.
Prove: The angles are supplementary.

Paragraph Proof:
When two angles form a linear pair, the resulting angle is a straight angle whose measure is 180 . By definition, two angles are supplementary if the sum of their measures is 180 . By the Angle Addition Postulate, $m \angle 1+m \angle 2=180$. Thus, if two angles form a linear pair, then the angles are supplementary.

ANSWER:

Given: Two angles form a linear pair.
Prove: The angles are supplementary.

Paragraph Proof:
When two angles form a linear pair, the resulting angle is a straight angle whose measure is 180 . By definition, two angles are supplementary if the sum of their measures is 180 . By the Angle Addition Postulate, $m \angle 1+m \angle 2=180$. Thus, if two angles form a linear pair, then the angles are supplementary.

2-8 Proving Angle Relationships

17. Complement Theorem

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given a right angle. Use the properties that you have learned about congruent angles, right angles, complementary angles, and equivalent expressions in algebra to walk through the proof.
Given: $\angle A B C$ is a right angle.
Prove: $\angle 1$ and $\angle 2$ are complementary angles.

Proof:
Statements (Reasons)

1. $\angle A B C$ is a right angle. (Given)
2. $m \angle A B C=90$ (Definition of a right angle)
3. $m \angle A B C=m \angle 1+m \angle 2$ (Angle Addition Postulate)
4. $m \angle 1+m \angle 2=90$ (Substitution)
5. $\angle 1$ and $\angle 2$ are complementary. (Definition of complimentary angles)

ANSWER:

Given: $\angle A B C$ is a right angle..
Prove: $\angle 1$ and $\angle 2$ are complementary angles.

Proof:
Statements (Reasons)

1. $\angle A B C$ is a right angle. (Given)
2. $m \angle A B C=90$ (Def. of rt. $\angle s$)
3. $m \angle A B C=m \angle 1+m \angle 2$ (\angle Add. Post.)
4. $m \angle 1+m \angle 2=90$ (Subst.)
5. $\angle 1$ and $\angle 2$ are complementary angles. (Def. of comp. $\angle \boldsymbol{s}$)

2-8 Proving Angle Relationships

18. Reflexive Property of Angle Congruence

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given an angle. Use the properties that you have learned about congruent angles and equivalent expressions in algebra to walk through the proof.
Given: $\angle A$

Prove: $\angle A \cong \angle A$
Proof:
Statements (Reasons)

1. $\angle A$ is an angle. (Given)
2. $m \angle A \cong m \angle A$ (Reflection Property)
3. $\angle A \cong \angle A$ (Definition of congruent angles)

ANSWER:
Given: $\angle A$

Prove: $\angle A \cong \angle A$
Proof:
Statements (Reasons)

1. $\angle A$ is an angle. (Given)
2. $m \angle A \cong m \angle A$ (Refl. Prop.)
3. $\angle A \cong \angle A$ (Def. of $\cong \angle s)$

2-8 Proving Angle Relationships

19. Transitive Property of Angle Congruence

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles. Use the properties that you have learned about congruent angles, Transitive property, and equivalent expressions in algebra to walk through the proof.
Given: $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$
Prove: $\angle 1 \cong \angle 3$

Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$ (Given)
2. $m \angle 1=m \angle 2, m \angle 2=m \angle 3$ Definition of congruent angles)
3. $m \angle 1=m \angle 3$ (Transitive Property)
4. $\angle 1 \cong \angle 3$ (Definition of congruent angles)

ANSWER:

Given: $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$
Prove: $\angle 1 \cong \angle 3$

Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$ (Given)
2. $m \angle 1=m \angle 2, m \angle 2=m \angle 3$ (Def. of $\cong \angle \mathrm{s}$)
3. $m \angle 1=m \angle 3$ (Trans. Prop.)
4. $\angle 1 \cong \angle 3$ (Def. of $\cong \angle \mathrm{s}$)
5. FLAGS Refer to the Florida state flag at the right. Prove that the sum of the four angle measures is 360 .

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given the Florida state flag with diagonals. Use the properties that you have learned about congruent angles and equivalent expressions in algebra to walk through the proof.
Given:

2-8 Proving Angle Relationships

Prove: $m \angle 1+m \angle 2+m \angle 3+m \angle 4=360$
Proof:
Statements (Reasons)
1.

(Given)
2. $m \angle 1+m \angle 2=180$ and $m \angle 3+m \angle 4=180$ (Supplementary Theorem)
3. $m \angle 1+m \angle 2+m \angle 3=180+m \angle 3$ (Addition Property)
4. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=180+m \angle 3+m \angle 4$ (Addition Property)
5. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=180+180$ (Substitution)
6. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=360$ (Addition Property)

ANSWER:

Given:

Prove: $m \angle 1+m \angle 2+m \angle 3+m \angle 4=360$
Proof:
Statements (Reasons)
1.

(Given)
2. $m \angle 1+m \angle 2=180$ and $m \angle 3+m \angle 4=180$ (Suppl. Thm.)
3. $m \angle 1+m \angle 2+m \angle 3=180+m \angle 3$ (Add. Prop.)
4. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=180+m \angle 3+m \angle 4$
(Add. Prop.)
5. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=180+180$ (Subs.)
6. $m \angle 1+m \angle 2+m \angle 3+m \angle 4=360$ (Add. Prop.)

2-8 Proving Angle Relationships

21. CCSS ARGUMENTS The diamondback rattlesnake is a pit viper with a diamond pattern on its back. An enlargement of the skin of the snake at the left is shown below. If $\angle 1 \cong \angle 4$, prove that $\angle 2 \cong \angle 3$.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles. Use the properties that you have learned about congruent angles, vertical angles, and equivalent expressions in algebra to walk through the proof.
Given: $\angle 1 \cong \angle 4$
Prove: $\angle 2 \cong \angle 3$
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 4$ (Given)
2. $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ (Vertical angles are congruent)
3. $\angle 1 \cong \angle 3$ (Transitive Property)
4. $\angle 2 \cong \angle 3$ (Substitution)

ANSWER:

Given: $\angle 1 \cong \angle 4$
Prove: $\angle 2 \cong \angle 3$
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 4$ (Given)
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ (Vert. $\angle \mathrm{s}$ are \cong.)
3. $\angle 1 \cong \angle 3$ (Trans. Prop.)
4. $\angle 2 \cong \angle 3$ (Subs.)

PROOF Use the figure to write a proof of each theorem.

22. Theorem 2.9

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two perpendicular lines. Use the properties that you have learned about congruent angles, right angles, perpendicular lines, and equivalent expressions in algebra to walk through the proof.
Given: $\ell \perp m$
Prove: $\angle 2, \angle 3, \angle 4$ are right angles.

2-8 Proving Angle Relationships

Proof:

Statements (Reasons)

1. $\ell \perp m$ (Given)
2. $\angle 1$ is a right angle. (Definition of perpendicular)
3. $m \angle 1=90$ (Definition of right angles)
4. $\angle 1 \cong \angle 4$ (Vertical angles are congruent)
5. $m \angle 1=m \angle 4$ (Definition of vertical angles)
6. $\angle 1 \cong \angle 4$ (Substitution)
7. $\angle 1$ and $\angle 2$ form a linear pair.
$\angle 3$ and $\angle 4$ form a linear pair. (Definition of linear pairs)
8. $m \angle 1+m \angle 2=180, m \angle 3+m \angle 4=180$ (Linear pairs are supplementary)
9. $90+m \angle 2=180,90+m \angle 3=180$ (Substitution)
10. $m \angle 2=90, m \angle 3=90$ (Subtraction Property)
11. $\angle 2, \angle 3, \angle 4$ are right angles. (Definition. of right angles (Steps 6, 10))

ANSWER:

2-8 Proving Angle Relationships

Given:
$\ell \perp m$
Prove: $\angle 2, \angle 3, \angle 4$ are rt. $\angle \mathrm{s}$

Proof:

Statements (Reasons)

1. $\ell \perp m$ (Given)
2. $\angle 1$ is a right angle. (Def. of \perp)
3. $m \angle 1=90$ (Def. of rt. $\angle s$)
4. $\angle 1 \cong \angle 4$ (Vert. $\angle s \cong$)
5. $m \angle 1=m \angle 4$ (Def. of vertical $\angle \boldsymbol{s}$)
6. $m \angle 4=90$ (Subs.)
7. $\angle 1$ and $\angle 2$ form a linear pair.
$\angle 3$ and $\angle 4$ form a linear pair. (Def. of linear pairs)
8. $m \angle 1+m \angle 2=180, m \angle 3+m \angle 4=180$ (Linear pairs are supplementary.)
9. $90+m \angle 2=180,90+m \angle 3=180$ (Subs.)
10. $m \angle 2=90, m \angle 3=90$ (Subt. Prop.)
11. $\angle 2, \angle 3, \angle 4$ are rt. $\angle \mathrm{s}$. (Def. of rt. $\angle s$ (Steps 6, 10))

2-8 Proving Angle Relationships

23. Theorem 2.10

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two right angles. Use the properties that you have learned about congruent angles, right angles, and equivalent expressions in algebra to walk through the proof.

Given: $\angle 1$ and $\angle 2$ are right angles.
Prove: $\angle 1 \cong \angle 2$
Proof:
Statements (Reasons)

1. $\angle 1$ and $\angle 2$ are rt . $\angle \mathrm{s}$. (Given)
2. $m \angle 1=90, m \angle 2=90$ (Definition of right angles)
3. $m \angle 1=m \angle 2$ (Substitution)
4. $\angle 1 \cong \angle 2$ (Definition of congruent angles)

ANSWER:

Given: $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$.
Prove: $\angle 1 \cong \angle 2$
Proof:
Statements (Reasons)

1. $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$. (Given)
2. $m \angle 1=90, m \angle 2=90$ (Def. of rt. $\angle \mathrm{s}$)
3. $m \angle 1=m \angle 2$ (Subs.)
4. $\angle 1 \cong \angle 2$ (Def. of $\cong \angle \mathrm{s}$)

2-8 Proving Angle Relationships

24. Theorem 2.11

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two perpendicular lines. Use the properties that you have learned about congruent angles, right angles, perpendicular lines, and equivalent expressions in algebra to walk through the proof.

2-8 Proving Angle Relationships

Given:
$\ell \perp m$
Prove: $\angle 1 \cong \angle 2$

Statements (Reasons)

1. $\ell \perp m$ (Given)
2. $\angle 1$ and $\angle 2$ right angles. (Perpendicular lines intersect to form 4 right angles.)
3. $\angle 1 \cong \angle 2$ (All right angles are congruent .)

ANSWER:

2-8 Proving Angle Relationships

Given:
$\ell \perp m$
Prove: $\angle 1 \cong \angle 2$

Statements (Reasons)

1. $\ell \perp m$ (Given)
2. $\angle 1$ and $\angle 2 \mathrm{rt} . \angle \mathrm{s}$. (\perp lines intersect to form $4 \mathrm{rt} . \angle \mathrm{s}$.
3. $\angle 1 \cong \angle 2$ (All rt. $\angle \mathrm{s} \cong$.)

2-8 Proving Angle Relationships

25. Theorem 2.12

SOLUTION:
You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles, and two supplementary angles Use the properties that you have learned about congruent angles, supplmentary angles, right angles, and equivalent expressions in algebra to walk through the proof.

Given: $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are supplementary.
Prove: $\angle 1$ and $\angle 2$ are right angles.
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are supplementary. (Given)
2. $m \angle 1+m \angle 2=180$ (Definition of angles)
3. $m \angle 1=m \angle 2$ (Definition of congruent angles)
4. $m \angle 1+m \angle 1=180$ (Substitution)
5. $2(m \angle 1)=180$ (Substitution)
6. $m \angle 1=180$ (Division. Property)
7. $m \angle 2=180$ (Substitution (Steps 3, 6))
8. $\angle 1$ and $\angle 2$ are right angles (Definition of right angles)

ANSWER:

Given: $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are supplementary.
Prove: $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$.
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are rt. \angle s. (Given)
2. $m \angle 1+m \angle 2=180$ (Def. of $\angle \mathrm{s}$)
3. $m \angle 1=m \angle 2$ (Def. of $\cong \angle \mathrm{s}$)
4. $m \angle 1+m \angle 1=180$ (Subs.)
5. $2(m \angle 1)=180$ (Subs.)
6. $m \angle 1=180$ (Div. Prop.)
7. $m \angle 2=180$ (Subs.(Steps 3, 6))
8. $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$ (Def. of rt. $\angle \mathrm{s}$)

2-8 Proving Angle Relationships

26. Theorem 2.13

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two congruent angles. Use the properties that you have learned about congruent angles, linear pair, supplementary angles, right angles, and equivalent expressions in algebra to walk through the proof.

Given: $\angle 1 \cong \angle 2$
Prove: $\angle 1$ and $\angle 2$ are right angles.
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2$ (Given)
2. $\angle 1$ and $\angle 2$ form a linear pair. (Definition of linear pair)
3. $\angle 1$ and $\angle 2$ are supplementary. (Linear pairs are supplementary.)
4. $\angle 1$ and $\angle 2$ are right angles. (If angles are congruent and supplementary, they are right angles.)

ANSWER:

Given: $\angle 1 \cong \angle 2$
Prove: $\angle 1$ and $\angle 2$ are rt . $\angle \mathrm{s}$.
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2$ (Given)
2. $\angle 1$ and $\angle 2$ form a linear pair. (Def. of linear pair)
3. $\angle 1$ and $\angle 2$ are supplementary. (Linear pairs are supplementary.)
4. $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$. (If $\angle \mathrm{s} \cong$ and suppl., they are rt. $\angle s$.)

2-8 Proving Angle Relationships

27. CCSS ARGUMENTS To mark a specific tempo, the weight on the pendulum of a metronome is adjusted so that it swings at a specific rate. Suppose $\angle A B C$ in the photo is a right angle. If $m \angle 1=45$, write a paragraph proof to show that $\overrightarrow{B R}$ bisects $\angle A B C$.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given the measures of two angles. Use the properties that you have learned about congruent angles, right angles, angle bisectors, and equivalent expressions in algebra to walk through the proof.

Since the path of the pendulum forms a right angle, $\angle A B C$ is a right angle, or measures $90 . \overrightarrow{B R}$ divides $\angle A B C$ into $\angle A B R$ and $\angle C B R$. By the Angle Addition Postulate, $m \angle A B R+m \angle C B R=m \angle A B C$, and using substitution, $m \angle A B R+m \angle C B R=90$. Substituting again, $m \angle 1+m \angle 2=90$. We are given that $m \angle 1$ is 45 , so, substituting, $45+m \angle 2=90$. Using the Subtraction Property, $45-45+m \angle 2=90-45$, or $m \angle 2=45$. Since $\angle 1$ and $\angle 2$ are congruent, $\overrightarrow{B R}$ is the bisector of $\angle A B C$ by the definition of angle bisector.

ANSWER:

Since the path of the pendulum forms a right angle, $\angle A B C$ is a right angle, or measures $90 . \overrightarrow{B R}$ divides $\angle A B C$ into $\angle A B R$ and $\angle C B R$. By the Angle Addition Postulate, $m \angle A B R+m \angle C B R=m \angle A B C$ and, using substitution, $m \angle A B R+m \angle C B R=90$. Substituting again, $m \angle 1+m \angle 2=90$. We are given that $m \angle 1$ is 45 , so, substituting, $45+m \angle 2=90$. Using the Subtraction Property, $45-45+m \angle 2=90-45$. Since $\angle 1$ and $\angle 2$ are congruent, $\overrightarrow{B R}$ is the bisector of $\angle A B C$ by the definition of angle bisector.

2-8 Proving Angle Relationships

28. PROOF Write a proof of Theorem 2.8.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two vertical angles. Use the properties that you have learned about congruent angles, vertical angles, supplementary angles, linear pairs, and equivalent expressions in algebra to walk through the proof.

Given: $\angle 1$ and $\angle 3$ are vertical angles.
Prove: $\angle 1 \cong \angle 3$
Proof: Since $\angle 1$ and $\angle 3$ are vertical angles so they are formed by intersecting lines. Then we know that $\angle 1$ and $\angle 2$ are a linear pair and $\angle 2$ and $\angle 3$ are also a linear pair. By Theorem 2.3, $\angle 1$ and $\angle 2$ are supplementary angles and $\angle 2$ and $\angle 3$ are supplementary angles. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 3$.

ANSWER:

Given: $\angle 1$ and $\angle 3$ are vertical angles.
Prove: $\angle 1 \cong \angle 3$.
Proof: Since $\angle 1$ and $\angle 3$ are vertical angles so they are formed by intersecting lines. Then we know that $\angle 1$ and $\angle 2$ are a linear pair and $\angle 2$ and $\angle 3$ are also a linear pair. By Theorem 2.3, $\angle 1$ and $\angle 2$ are supplementary angles and $\angle 2$ and $\angle 3$ are supplementary angles. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 3$.
29. GEOGRAPHY Utah, Colorado, Arizona, and New Mexico all share a common point on their borders called Four Corners. This is the only place where four states meet in a single point. If $\angle 2$ is a right angle, prove that lines ℓ and m are perpendicular.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given a right angle. Use the properties that you have learned about congruent angles, right angles, vertical angles, and equivalent expressions in algebra to walk through the proof.
Given: $\angle 2$ is a right angle.

2-8 Proving Angle Relationships

Prove:
$\ell \perp m$
Proof:
Statements (Reasons)

1. $\angle 2$ is a right angle. (Given)
2. $m \angle 2=90$ (Definition of a right angles)
3. $m \angle 2 \cong m \angle 3$ (Vertical angles are congruent.)
4. $m \angle 3=90$ (Substitution)
5. $m \angle 1+m \angle 2=180$ (Supplementary Theorem)
6. $m \angle 1+90=180$ (Substitution)
7. $m \angle 1+90-90=180-90$ (Subtraction Property)
8. $m \angle 1=90$ (Subtraction. Property)
9. $\angle 1 \cong \angle 4$ (Vertical angles are congruent.)
10. $\angle 4 \cong \angle 1$ (Symmetric Property)
11. $m \angle 4=m \angle 1$ (Definition of congruent angles)
12. $m \angle 4 \cong 90$ (Substitution)
13. $\ell \perp m$ (Perpendicular lines intersect to form four right angles.)

ANSWER:
Given: $\angle 2$ is a right angle.

2-8 Proving Angle Relationships

Prove:
$\ell \perp m$
Proof:
Statements (Reasons)

1. $\angle 2$ is a right angle. (Given)
2. $m \angle 2=90$ (Def. of a rt. \angle)
3. $m \angle 2 \cong m \angle 3$ (Vert. $\angle \mathrm{s}$ are \cong.)
4. $m \angle 3=90$ (Subs.)
5. $m \angle 1+m \angle 2=180$ (Supp. Th.)
6. $m \angle 1+90=180$ (Subs.)
7. $m \angle 1+90-90=180-90$ (Subt. Prop.)
8. $m \angle 1=90$ (Subt. Prop.)
9. $\angle 1 \cong \angle 4$ (Vert. $\angle \mathrm{s}$ are \cong.)
10. $\angle 4 \cong \angle 1$ (Symm. Prop.)
11. $m \angle 4=m \angle 1$ (Def. of $\cong \angle \mathrm{s}$)
12. $m \angle 4 \cong 90$ (Subs.)
13. $\ell \perp m$ (Perpendicular lines intersect to form four right angles.)
14. MULTIPLE REPRESENTATIONS In this problem, you will explore angle relationships.
a. GEOMETRIC Draw a right angle $A B C$. Place point D in the interior of this angle and draw $\overrightarrow{B D}$. Draw $\overrightarrow{K L}$ and construct $\angle J K L$ congruent to $\angle A B D$.
b. VERBAL Make a conjecture as to the relationship between $\angle J K L$ and $\angle D B C$.
c. LOGICAL Prove your conjecture.

SOLUTION:

a. Use a compass, protractor, and straightedge for the construction. First draw $A B$ with the straightedge. Use the protractor to draw the 90 angle from $A B$. Label all the points. Set the compass to a distance shorter then $A C$. Draw arcs with the same compass setting from point points A and C. Label the point of intersection D. Connect B and D. Draw $J K$ and label points. Use the same compass setting to draw point L. Connect K and L.

b. $\angle D B C$ and $\angle A B D$ are complementary. Since $\angle J K L$ was constructed to be congruent to $\angle A B D$, then $\angle D B C$ and $\angle J K L$ are complementary.
c. You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given two complementary angles. Use the properties that you have learned about congruent angles, complementary angles, and equivalent expressions in algebra to walk through the proof.
Given: $\angle A B D$ and $\angle D B C$ are complementary.
$\angle A B D \cong \angle J K L$
Prove: $\angle D B C$ and $\angle J K L$ are complementary.
Proof:
Statements (Reasons)

1. $\angle A B D$ and $\angle D B C$ are complementary $\angle A B D \cong \angle J K L$. (Given)
2. $m \angle D B C+m \angle A B D=90$ (Definition of complementary angles)
3. $m \angle A B D=m \angle J K L$ (Definition of congruent angles)

2-8 Proving Angle Relationships

4. $m \angle D B C+m \angle J K L=90$ (Substitution)
5. $\angle D B C$ and $\angle J K L$ are complementary. (Definition of complementary angles)

ANSWER:
a.

b. Sample answer: $\angle D B C$ and $\angle J K L$ are complementary.
c. Given: $\angle A B D$ and $\angle D B C$ are complementary.
$\angle A B D \cong \angle J K L$
Prove: $\angle D B C$ and $\angle J K L$ are complementary.
Proof:
Statements (Reasons)

1. $\angle A B D$ and $\angle D B C$ are complementary $\angle A B D \cong \angle J K L$.(Given)
2. $m \angle D B C+m \angle A B D=90$ (Def. of comp. $\angle \mathrm{s}$)
3. $m \angle A B D=m \angle J K L$ (Def. of $\cong \angle \mathrm{s}$)
4. $m \angle D B C+m \angle J K L=90$ (Subs.)
5. $\angle D B C$ and $\angle J K L$ are complementary (Def. of comp. $\angle \mathrm{s}$)
6. OPEN ENDED Draw an angle $W X Z$ such that $m \angle W X Z=45$. Construct $\angle Y X Z$ congruent to $\angle W X Z$. Make a conjecture as to the measure of $\angle W X Y$, and then prove your conjecture.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here, you are given an angle bisector and the measure of an angle.Use the properties that you have learned about congruent angles, angle bisectors, right angles, and equivalent expressions in algebra to walk through the proof.
Given: $\overline{X Z}$ bisects $\angle W X Y$, and $m \angle W X Z=45$.
Prove: $\angle W X Y$ is a right angle.

Proof:

Statements (Reasons)

1. $\overline{X Z}$ bisects $\angle W X Y$, and $m \angle W X Z=45$ (Given)
2. $\angle W X Z \cong \angle Z X Y$ (Definition of angle bisector)
3. $m \angle W X Z=m \angle Z X Y$ (Definition of congruent angles)
4. $m \angle Z X Y=45$ (Substitution)
5. $m \angle W X Y=m \angle W X Z+m \angle Z X Y$ (Angle Addition Postulate)

2-8 Proving Angle Relationships

6. $m \angle W X Y=45+45$ (Substitution)
7. $m \angle W X Y=90$ (Substitution)
8. $\angle W X Y$ is a right angle. (Definition of right angle)

ANSWER:

Given: $\overline{X Z}$ bisects $\angle W X Y$, and $m \angle W X Z=45$.
Prove: $\angle W X Y$ is a right angle.

Proof:

Statements (Reasons)

1. $\overline{X Z}$ bisects $\angle W X Y$, and $m \angle W X Z=45$. (Given)
2. $\angle W X Z \cong \angle Z X Y$ (Def. of \angle bisector)
3. $m \angle W X Z=m \angle Z X Y$ (Def. of $\cong \angle \mathrm{s}$)
4. $m \angle Z X Y=45$ (Subs.)
5. $m \angle W X Y=m \angle W X Z+m \angle Z X Y$ (\angle Add. Post.)
6. $m \angle W X Y=45+45$ (Subs.)
7. $m \angle W X Y=90$ (Subs.)
8. $\angle W X Y$ is a right angle. (Def. of rt. \angle)
9. WRITING IN MATH Write the steps that you would use to complete the proof below.

Given: $\overline{B C} \cong \overline{C D}, A B=\frac{1}{2} B D$
Prove: $\overline{A B} \cong \overline{C D}$

SOLUTION:

First, show that $B C=C D$ by the definition of congruent segments. Then show $B C+C D=B D$ by the Segment Addition Postulate. . Then use substitution to show that $C D+C D=B D$ and $2 C D=B D$. Divide to show that $C D=\frac{1}{2} B D$, so $A B=C D$. That means that $\overline{A B} \cong \overline{C D}$ by the definition of congruent segments.

ANSWER:

Sample answer: First, show that $B C=C D$ and $B C+C D=B D$. Then use substitution to show that $C D+C D=B D$ and $2 C D=B D$. Divide to show that $C D=\frac{1}{2} B D$, so $A B=C D$. That means that $\overline{A B} \cong \overline{C D}$.
33. CHALLENGE In this lesson, one case of the Congruent Supplements Theorem was proven. In Exercise 6, you proved the same case for the Congruent Complements Theorem. Explain why there is another case for each of these theorems. Then write a proof of this second case for each theorem.

SOLUTION:

2-8 Proving Angle Relationships

Each of these theorems uses the words "or to congruent angles" indicating that this case of the theorem must also be proven true. The other proofs only addressed the "to the same angle" case of the theorem.
Given: $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$.
Prove: $\angle G H I \cong \angle J K L$

Proof:
Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$. (Given)
2. $m \angle A B C+m \angle G H I=90, m \angle D E F+m \angle J K L=90$ (Definition of complementary angles)
3. $m \angle A B C+m \angle J K L=90$ (Substitution)
4. $90=m \angle A B C+m \angle J K L$ (Symmetric. Property)
5. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$ (Transitive Property)
6. $m \angle A B C+m \angle G H I-m \angle A B C=m \angle A B C+m \angle J K L-m \angle A B C$ (Subtraction Property)
7. $m \angle G H I=m \angle J K L$ (Simplify)
8. $\angle G H I \cong \angle J K L$ (Definition of congruent angles)

Given: $\angle A B C \cong \angle D E F, \angle G H I$ is supplementary to $\angle A B C, \angle J K L$ is supplementary to $\angle D E F$.
Prove: $\angle G H I \cong \angle J K L$

Proof:
Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is supplementary to $\angle A B C, \angle J K L$ is supplementary to $\angle D E F$. (Given)
2. $m \angle A B C+m \angle G H I=180, m \angle D E F+m \angle J K L=180$ (Definition of supplementary angles)
3. $m \angle A B C+m \angle J K L=180$ (Substitution)
4. $180=m \angle A B C+m \angle J K L$ (Symmetric Property)
5. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$ (Transitive Property)
6. $m \angle A B C+m \angle G H I-m \angle A B C=m \angle A B C+m \angle J K L-m \angle A B C$ (Subtraction Property)
7. $m \angle G H I=m \angle J K L$ (Simplify.)
8. $\angle G H I \cong \angle J K L$ (Definition of congruent angles)

ANSWER:

Each of these theorems uses the words "or to congruent angles" indicating that this case of the theorem must also be proven true. The other proofs only addressed the "to the same angle" case of the theorem.
Given: $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$.
Prove: $\angle G H I \cong \angle J K L$

2-8 Proving Angle Relationships

Proof:
Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$. (Given)
2. $m \angle A B C+m \angle G H I=90, m \angle D E F+m \angle J K L=90$ (Def. of compl. $\angle s$)
3. $m \angle A B C+m \angle J K L=90$ (Subs.)
4. $90=m \angle A B C+m \angle J K L$ (Symm. Prop.)
5. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$ (Trans. Prop.)
6. $m \angle A B C+m \angle G H I-m \angle A B C=m \angle A B C+m \angle J K L-m \angle A B C$ (Subt. Prop.)
7. $m \angle G H I=m \angle J K L$ (Simplify.)
8. $\angle G H I \cong \angle J K L$ (Def. of $\cong \angle s$)

Given: $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$.

Prove: $\angle G H I \cong \angle J K L$

Proof:
Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$. (Given)
2. $m \angle A B C+m \angle G H I=180, m \angle D E F+m \angle J K L=180$ (Def. of suppl. $\angle s$)
3. $m \angle A B C+m \angle J K L=180$ (Subs.)
4. $180=m \angle A B C+m \angle J K L$ (Symm. Prop.)
5. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$ (Trans. Prop.)
6. $m \angle A B C+m \angle G H I-m \angle A B C=m \angle A B C+m \angle J K L-m \angle A B C$ (Subt. Prop.)
7. $m \angle G H I=m \angle J K L$ (Simplify.)
8. $\angle G H I \cong \angle J K L$ (Def. of $\cong \angle s$)

2-8 Proving Angle Relationships

34. REASONING Determine whether the following statement is sometimes, always, or never true. Explain your reasoning.
If one of the angles formed by two intersecting lines is acute, then the other three angles formed are also acute.

SOLUTION:

If one of the angles formed by two intersecting lines is acute, the other three angles formed are never all acute. Adjacent angles formed by two interesting lines form a linear pair. If one angle in this linear pair is acute, then its measure is less than 90 . The supplement of any angle will be greater than 90 because subtracting a number less than 90 from 180 must always result in a measure greater than 90 .

In the example above, if a is acute, the b will be obtuse. c will be obtuse because is is an vertical angle with $b . b$ is acute.

ANSWER:

Never; adjacent angles formed by two interesting lines form a linear pair. If one angle in this linear pair is acute, then its measure is less than 90 . The supplement of any angle will be greater than 90 because subtracting a number less than 90 from 180 must always result in a measure greater than 90 .

2-8 Proving Angle Relationships

35. WRITING IN MATH Explain how you can use your protractor to quickly find the measure of the supplement of an angle.

SOLUTION:

Since protractors have the scale for both acute and obtuse angles along the top, the supplement is the measure of the given angle on the other scale. In the example below. The acute measure for the angle is 80° and the obtuse is 100°.

ANSWER:
Sample answer: Since protractors have the scale for both acute and obtuse angles along the top, the supplement is the measure of the given angle on the other scale.
36. GRIDDED RESPONSE What is the mode of this set of data?
$4,3,-2,1,4,0,1,4$

SOLUTION:

The mode is the value or values that occur most frequently in a data set. Here, the mode is 4 .
ANSWER:
4

2-8 Proving Angle Relationships

37. Find the measure of $\angle C F D$.

A 66°
B 72°
C 108°
D 138°

SOLUTION:

In the figure, $\angle B F D$ and $\angle A F D$ are vertical angles.
So, $m \angle B F D=m \angle A F D$.
Here, $m \angle B F D=m \angle B F C+m \angle C F D$.
Substitute.

$$
\begin{gathered}
m \angle B F C+m \angle C F D=m \angle A F E \\
42+m \angle C F D=108 \\
m \angle C F D=66
\end{gathered}
$$

So, the correct option is A.
ANSWER:
A
38. ALGEBRA Simplify.
$4(3 x-2)(2 x+4)+3 x^{2}+5 x-6$
F $9 x^{2}+3 x-14$
G $9 x^{2}+13 x-14$
H $27 x^{2}+37 x-38$
J $27 x^{2}+27 x-26$

SOLUTION:

$$
\begin{array}{ll}
4(3 x-2)(2 x+4)+3 x^{2}+5 x-6 & \text { Original expression } \\
=4\left(6 x^{2}+12 x-4 x-8\right)+3 x^{2}+5 x-6 & \text { Multiply. } \\
=4\left(6 x^{2}+8 x-8\right)+3 x^{2}+5 x-6 & \\
=24 x^{2}+32 x-32+3 x^{2}+5 x-6 & \\
=27 x^{2}+37 x-38 & \text { Distributify. } \\
= & \text { Simplify. }
\end{array}
$$

The correct choice is H .

ANSWER:

H

2-8 Proving Angle Relationships

39. SAT/ACT On a coordinate grid where each unit represents 1 mile, Isabel's house is located at $(3,0)$ and a mall is located at $(0,4)$. What is the distance between Isabel's house and the mall?
A 3 miles
B 5 miles
C 12 miles
D 13 miles
E 25 miles
SOLUTION:
Use the Distance Formula.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
d & =\sqrt{(0-3)^{2}+(4-0)^{2}} \\
& =\sqrt{(-3)^{2}+(4)^{2}} \\
& =\sqrt{9+16} \\
& =5
\end{aligned}
$$

The distance between Isabel's house and the mall is 5 miles.
So, the correct option is B.
ANSWER:
B
40. MAPS On a U.S. map, there is a scale that lists kilometers on the top and miles on the bottom.

0 km	20	40	50	60	80	100
	1	1	1	1	1	
0 mi			31			62

Suppose $\overline{A B}$ and $\overline{C D}$ are segments on this map. If $A B=100$ kilometers and $C D=62$ miles, is $\overline{A B} \cong \overline{C D}$? Explain.

SOLUTION:

If $A B=100$ kilometers and $C D=62$ miles, then $\overline{A B} \cong \overline{C D}$. According to the scale, $100 \mathrm{~km}=62$ miles, so $A B=C D$. By the definition of congruence, $\overline{A B} \cong \overline{C D}$.

ANSWER:
Yes; according to the scale, $100 \mathrm{~km}=62$ miles, so $A B=C D$. By the definition of congruence, $\overline{A B} \cong \overline{C D}$.

2-8 Proving Angle Relationships

State the property that justifies each statement.

41. If $y+7=5$, then $y=-2$.

SOLUTION:

To change the equation $y+7=5$ to $y=-2,7$ must be subtracted from each side. Use the Subtraction Property of Equality.

$$
\begin{aligned}
y+7 & =5 \\
y+7-7 & =5-7 \\
y & =-2
\end{aligned}
$$

ANSWER:
Subt. Prop.
42. If $M N=P Q$, then $P Q=M N$.

SOLUTION:
Use the Symmetric Property of Equality to change the equation $M N=P Q$, to $P Q=M N$.
ANSWER:
Symm. Prop
43. If $a-b=x$ and $b=3$, then $a-3=x$.

SOLUTION:
Since $a-b=x$ and $b=3$, substitute 3 for b. Then $a-3=x$. This utilizes Substitution.
ANSWER:
Subs.
44. If $x(y+z)=4$, then $x y+x z=4$

SOLUTION:
Use the Distributive Property to change the equation $x(y+z)=4$ to $x y+x z=4$.
ANSWER:
Dist. Prop.
Determine the truth value of the following statement for each set of conditions.
If you have a fever, then you are sick.
45. You do not have a fever, and you are sick.

SOLUTION:
The conditional statement "You do not have a fever, and you are sick." is true. When this hypothesis is true and the the conclusion is also true, the conditional is true.

ANSWER:
True

2-8 Proving Angle Relationships

46. You have a fever, and you are not sick.

SOLUTION:

The conditional statement "You have a fever, and you are not sick." is false. When the conclusion is false, the conditional is false is regardless of the hypothesis So, the conditional statement is false.

ANSWER:
false
47. You do not have a fever, and you are not sick.

SOLUTION:

The conditional statement "You do not have a fever, and you are not sick." is true. When this hypothesis is false, the conclusion is also false, So, the conditional statement is true.

ANSWER:
true
48. You have a fever, and you are sick.

SOLUTION:

The conditional statement "I have a fever, and you are sick." is true. When this hypothesis is true, the conclusion is also true. So, the conditional statement is true.

ANSWER:

true

Refer to the figure.

49. Name a line that contains point P.

SOLUTION:

Locate point P in the figure. Identify the line that contains point P. Point P is on line n.
ANSWER:
line n
50. Name the intersection of lines n and m.

SOLUTION:

Locate lines n and m. Identify the point of intersection. Point R is the intersection of lines n and m.
ANSWER:
point R

2-8 Proving Angle Relationships

51. Name a point not contained in lines ℓ, m, or n.

SOLUTION:

Locate lines ℓ, m, or n. Identify a point not on the three lines. Point W is not on lines ℓ, m, or n.
ANSWER:
point W
52. What is another name for line n ?

SOLUTION:

There are two points P and R marked on the line n. So, the line n can also be called as $\overleftrightarrow{P R}$.
ANSWER:
Sample answer: $\overleftrightarrow{P R}$.
53. Does line ℓ intersect line m or line n ? Explain.

SOLUTION:

Line ℓ intersects both line m or line n. If all three lines are extended they intersects.

ANSWER:

Yes; it intersects both m and n when all three lines are extended.

