4-4 Proving Triangles Congruent-SSS, SAS

1. OPTICAL ILLUSION The figure below is a pattern formed using four large congruent squares and four small congruent squares.

a. How many different-sized triangles are used to create the illusion?
b. Use the Side-Side-Side Congruence Postulate to prove that $\triangle A B C \cong \triangle C D A$.
c. What is the relationship between $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$? Explain your reasoning.

SOLUTION:

a. There are two differently sized triangles in the figure: $\triangle A B C$ and the smaller triangle in the interior of $\triangle A B C$.
b. Given: $A B C D$ is a square

Prove: $\triangle A B C \cong \triangle C D A$
Proof:
Statements (Reasons)

1. $A B C D$ is a square (Given)
2. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$ (Def. of a square)
3. $\overline{A C} \cong \overline{C A}$ (Reflex. Prop. \cong)
4. $\triangle A B C \cong \triangle C D A$. (SSS)
c. Sample answer: $\overleftrightarrow{A B} \| \overleftrightarrow{C D} ; \overleftrightarrow{A C}$ is a transversal to $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, so $\angle C A B$ and $\angle A C D$ are alternate interior angles. Since $\triangle A B C \cong \triangle C D A, \angle C A B$ and $\angle A C D$ are congruent corresponding angles. Therefore, the lines are parallel

ANSWER:
a. two
b. Given: $A B C D$ is a square

Prove: $\triangle A B C \cong \triangle C D A$
Proof:
Statements (Reasons)

1. $A B C D$ is a square (Given)
2. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$ (Def. of a square)
3. $\overline{A C} \cong \overline{C A}$ (Reflex. Prop. \cong)
4. $\triangle A B C \cong \triangle C D A$. (SSS)
c. Sample answer: $\overleftrightarrow{A B} \| \overleftrightarrow{C D} ; \overleftrightarrow{A C}$ is a transversal to $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, so $\angle C A B$ and $\angle A C D$ are alternate interior angles. Since $\triangle A B C \cong \triangle C D A, \angle C A B$ and $\angle A C D$ are congruent corresponding angles. Therefore, the lines are parallel

4-4 Proving Triangles Congruent-SSS, SAS

2. EXTENDED RESPONSE Triangle $A B C$ has vertices $A(-3,-5), B(-1,-1)$, and $C(-1,-5)$. Triangle $X Y Z$ has vertices $X(5,-5), Y(3,-1)$, and $Z(3,-5)$.
a. Graph both triangles on the same coordinate plane.
b. Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning.
c. Write a logical argument using coordinate geometry to support your conjecture.

SOLUTION:

a.

b. The triangles look the same size and shape so we can conjecture that they are congruent.
c. Observe the graph, the triangles are right triangles. In triangle $A B C, A C=2$ and $B C=4$. Use the Pythagorean Theorem to find $A B$.

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} & & \\
A B & =\sqrt{A C^{2}+B C^{2}} & & \text { Take the square root. } \\
& =\sqrt{2^{2}+4^{2}} & & \text { Substitute. } \\
& =\sqrt{4+16} & & \text { Square term s. } \\
& =\sqrt{20} & & \text { Addition. }
\end{aligned}
$$

Similarly In triangle $X Y Z, Z X=2$ and $Z Y=4$. Use the Pythagorean Theorem to find $X Y$.

$$
\begin{aligned}
X Y^{2} & =X Z^{2}+Z Y^{2} & & \\
X Y & =\sqrt{X Z^{2}+Z Y^{2}} & & \text { Take the squareroot. } \\
& =\sqrt{2^{2}+4^{2}} & & \text { Substitute. } \\
& =\sqrt{4+16} & & \text { Square terms. } \\
& =\sqrt{20} & & \text { Addition. }
\end{aligned}
$$

The corresponding sides have the same measure and are congruent. So, $\triangle A B C \cong \triangle X Y Z$ by SSS.
ANSWER:
a.

b. The triangles look the same size and shape so we can conjecture that they are congruent.
c. $A B=\sqrt{20}, X Y=\sqrt{20}, B C=4, Y Z=4, A C=2$, and $X Z=2$. The corresponding sides have the same measure and are congruent. So, $\triangle A B C \cong \triangle X Y Z$ by SSS.
3. EXERCISE In the exercise diagram, if $\overline{L P} \cong \overline{N O}, \angle L P M \cong \angle N O M$, and $\triangle M O P$ is equilateral, write a paragraph proof to show that $\Delta L M P \cong \triangle N M O$.

SOLUTION:

Sample answer: We are given that $\overline{L P} \cong \overline{N O}$ and $\angle L P M \cong \angle N O M$. Since $\triangle M O P$ is equilateral, $\overline{M O} \cong \overline{M P}$ by the definition of an equilateral triangle. Therefore, $\triangle L M P$ is congruent to $\triangle N M O$ by the Side-Angle-Side Congruent Postulate.

ANSWER:

Sample answer: We are given that $\overline{L P} \cong \overline{N O}$ and $\angle L P M \cong \angle N O M$. Since $\triangle M O P$ is equilateral, $\overline{M O} \cong \overline{M P}$ by the definition of an equilateral triangle. Therefore, $\triangle L M P$ is congruent to $\triangle N M O$ by the Side-Angle-Side Congruent Postulate.

4-4 Proving Triangles Congruent-SSS, SAS

Write a two-column proof.

4. Given: $\overline{B A} \cong \overline{D C}, \angle B A C \cong \angle D C A$

Prove: $\overline{B C} \cong \overline{D A}$

SOLUTION:

Proof:
Statements (Reasons)

1. $\overline{B A} \cong \overline{D C}, \angle B A C \cong \angle D C A$ (Given)
2. $\overline{A C} \cong \overline{C A}$ (Reflex. Prop. \cong)
3. $\triangle B C A \cong \triangle D A C$ (SAS)
4. $\overline{B C} \cong \overline{D A}$ (CРCTC)

ANSWER:
Proof:
Statements (Reasons)

1. $\overline{B A} \cong \overline{D C}, \angle B A C \cong \angle D C A$ (Given)
2. $\overline{A C} \cong \overline{C A}$ (Reflex. Prop. \cong)
3. $\triangle B C A \cong \triangle D A C$ (SAS)
4. $\overline{B C} \cong \overline{D A}$ (СРСТС)

PROOF Write the specified type of proof.

5. paragraph proof

Given: $\overline{Q R} \cong \overline{S R}$,

$$
\overline{S T} \cong \overline{Q T}
$$

Prove: $\triangle Q R T \cong \triangle S R T$

SOLUTION:
Proof: We know that $\overline{Q R} \cong \overline{S R}$ and $\overline{S T} \cong \overline{Q T} \cdot \overline{R T} \cong \overline{R T}$ by the Reflexive Property. Since $\overline{Q R} \cong \overline{S R}, \overline{S T} \cong \overline{Q T}$, and $\overline{R T} \cong \overline{R T}, \Delta Q R T \cong \Delta S R T$ by SSS.

ANSWER:
Proof: We know that $\overline{Q R} \cong \overline{S R}$ and $\overline{S T} \cong \overline{Q T} . \overline{R T} \cong \overline{R T}$ by the Reflexive Property. Since $\overline{Q R} \cong \overline{S R}, \overline{S T} \cong \overline{Q T}$, and $\overline{R T} \cong \overline{R T}, \Delta Q R T \cong \triangle S R T$ by SSS.

4-4 Proving Triangles Congruent-SSS, SAS

6. two-column proof

Given: $\overline{A B} \cong \overline{E D}, \overline{C A} \cong \overline{C E}$, $\overline{A C}$ bisects $\overline{B D}$.
Prove: $\triangle A B C \cong \triangle E D C$

SOLUTION:

Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \overline{C A} \cong \overline{C E}$, and $\overline{A C}$ bisects $\overline{B D}$ (Given)
2. C is the midpoint of $\overline{B D}$ (Def. of Segment Bisectors)
3. $\overline{B C} \cong \overline{C D}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SSS)

ANSWER:
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \overline{C A} \cong \overline{C E}$, and $\overline{A C}$ bisects $\overline{B D}$ (Given)
2. C is the midpoint of $\overline{B D}$ (Def. of Segment Bisectors)
3. $\overline{B C} \cong \overline{C D}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SSS)

4-4 Proving Triangles Congruent-SSS, SAS

7. BRIDGES The Sunshine Skyway Bridge in Florida is the world's longest cable-stayed bridge, spanning 4.1 miles of Tampa Bay. It is supported using steel cables suspended from two concrete supports. If the supports are the same height above the roadway and perpendicular to the roadway, and the topmost cables meet at a point midway between the supports, prove that the two triangles shown in the photo are congruent.

Refer to the figure on page 269.

SOLUTION:

Given: $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$.
Prove: $\triangle A B C \cong \triangle E D C$
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$. (Given)
2. $\angle A B C \cong \angle E D C$ (All rt. $\angle \mathrm{s} \cong$)
3. $\overline{B C} \cong \overline{D C}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SAS)

ANSWER:
Given: $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$.
Prove: $\triangle A B C \cong \triangle E D C$
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$. (Given)
2. $\angle A B C \cong \angle E D C$ (All rt. $\angle \mathrm{s} \cong$)
3. $\overline{B C} \cong \overline{D C}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SAS)

CCSS SENSE-MAKING Determine whether $\triangle M N O \cong \triangle Q R S$. Explain.
8. $M(2,5), N(5,2), O(1,1), Q(-4,4), R(-7,1), S(-3,0)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{M N}, \overline{N O}$ and $\overline{O M}$.
$\overline{M N}$ has end points $M(2,5)$ and $N(5,2)$.
$M N=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
M N & =\sqrt{(5-2)^{2}+(2-5)^{2}} & & \text { Substitute. } \\
& =\sqrt{(3)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+9} & & \text { Square term } . \\
& =\sqrt{18} & & \text { Addition. }
\end{aligned}
$$

$\overline{N O}$ has end points $N(5,2)$ and $O(1,1)$.
$N O=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
N O & =\sqrt{(1-5)^{2}+(1-2)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-4)^{2}+(-1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{16+1} & & \text { Square term } \mathrm{s} \\
& =\sqrt{17} & & \text { Addition. }
\end{aligned}
$$

$\overline{O M}$ has end points $O(1,1)$ and $M(2,5)$.
$O M=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
O M & =\sqrt{(2-1)^{2}+(5-1)^{2}} & & \text { Substitute. } \\
& =\sqrt{(1)^{2}+(4)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+16} & & \text { Square term } \mathrm{S} . \\
& =\sqrt{17} & & \text { Addition. }
\end{aligned}
$$

Similarly, find the lengths of $\overline{Q R}, \overline{R S}$ and $\overline{S Q}$.
$\overline{Q R}$ has end points $Q(-4,4)$ and $R(-7,1)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(-7-(-4))^{2}+(1-4)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-3)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+9} & & \text { Square terms. } \\
& =\sqrt{18} & & \text { Addition. }
\end{aligned}
$$

$\overline{R S}$ has end points $R(-7,1)$ and $S(-3,0)$.

4-4 Proving Triangles Congruent-SSS, SAS

$$
R S=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
R S & =\sqrt{(-3-(-7))^{2}+(0-1)^{2}} & & \text { Substitute. } \\
& =\sqrt{(4)^{2}+(-1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{16+1} & & \text { Square term s. } \\
& =\sqrt{17} & & \text { Addition. }
\end{aligned}
$$

$\overline{S Q}$ has end points $S(-3,0)$ and $Q(-4,4)$.

$$
S Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
S Q & =\sqrt{(-4-(-3))^{2}+(4-0)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-1)^{2}+(4)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+16} & & \text { Square term s. } \\
& =\sqrt{17} & & \text { Addition. }
\end{aligned}
$$

So, $\overline{M N} \cong \overline{Q R}, \overline{N O} \cong \overline{R S}$ and $\overline{O M} \cong \overline{S Q}$.
Each pair of corresponding sides has the same measure so they are congruent. $\triangle M N O \cong \triangle Q R S$ by SSS.
ANSWER:
$M N=\sqrt{18}, N O=\sqrt{17}, M O=\sqrt{17}, Q R=\sqrt{18}, R S=\sqrt{17}$, and $Q S=\sqrt{17}$. Each pair of corresponding sides has the same measure so they are congruent. $\triangle M N O \cong \triangle Q R S$ by SSS.
9. $M(0,-1), N(-1,-4), O(-4,-3), Q(3,-3), R(4,-4), S(3,3)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{M N}, \overline{N O}$ and $\overline{O M}$.
$\overline{M N}$ has end points $M(0,-1)$ and $N(-1,-4)$.
$M N=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
M N & =\sqrt{(-1-0)^{2}+(-4-(-1))^{2}} & & \text { Substitute. } \\
& =\sqrt{(-1)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+9} & & \text { Square term } . \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

4-4 Proving Triangles Congruent-SSS, SAS

$\overline{N O}$ has end points $N(-1,-4)$ and $O(-4,-3)$.
$N O=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
N O & =\sqrt{(-4-(-1))^{2}+(-3-(-4))^{2}} & & \text { Substitute. } \\
& =\sqrt{(-3)^{2}+(1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+1} & & \text { Square term } . \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

$\overline{O M}$ has end points $O(-4,-3)$ and $M(0,-1)$.
$O M=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
O M & =\sqrt{(0-(-4))^{2}+(-1-(-3))^{2}} & & \text { Substitute. } \\
& =\sqrt{(4)^{2}+(2)^{2}} & & \text { Subtraction. } \\
& =\sqrt{16+4} & & \text { Square term } . \\
& =\sqrt{20} & & \text { Addition. }
\end{aligned}
$$

Similarly, find the lengths of $\overline{Q R}, \overline{R S}$ and $\overline{S Q}$.
$\overline{Q R}$ has end points $Q(3,-3)$ and $R(4,-4)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(4-3)^{2}+(-4-(-3))^{2}} & & \text { Substitute. } \\
& =\sqrt{(-1)^{2}+(-1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+1} & & \text { Square term } . \\
& =\sqrt{2} & & \text { Addition. }
\end{aligned}
$$

$\overline{R S}$ has end points $R(4,-4)$ and $S(3,3)$.
$R S=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
R S & =\sqrt{(3-4)^{2}+(3-(-4))^{2}} & & \text { Substitute. } \\
& =\sqrt{(-1)^{2}+(7)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+49} & & \text { Square term } . \\
& =\sqrt{50} & & \text { Addition. }
\end{aligned}
$$

$\overline{S Q}$ has end points $S(3,3)$ and $Q(3,-3)$.
$S Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
S Q & =\sqrt{(3-3)^{2}+(-3-3)^{2}} & & \text { Substitute. } \\
& =\sqrt{(0)^{2}+(-6)^{2}} & & \text { Subtraction. } \\
& =\sqrt{0+36} & & \text { Square terms. } \\
& =6 & & \text { Addition. }
\end{aligned}
$$

The corresponding sides are not congruent, so the triangles are not congruent.

ANSWER:

$M N=\sqrt{10}, N O=\sqrt{10}, M O=\sqrt{20}, Q R=\sqrt{2}, R S=\sqrt{50}$, and $Q S=6$. The corresponding sides are not congruent, so the triangles are not congruent.
10. $M(0,-3), N(1,4), O(3,1), Q(4,-1), R(6,1), S(9,-1)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{M N}, \overline{N O}$ and $\overline{O M}$.
$\overline{M N}$ has end points $M(0,-3)$ and $N(1,4)$.
$M N=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
M N & =\sqrt{(1-0)^{2}+(4-(-3))^{2}} & & \text { Substitute. } \\
& =\sqrt{(1)^{2}+(7)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+49} & & \text { Square term } . \\
& =\sqrt{50} & & \text { Addition. }
\end{aligned}
$$

$\overline{N O}$ has end points $N(1,4)$ and $O(3,1)$.
$N O=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

4-4 Proving Triangles Congruent-SSS, SAS

$$
\begin{aligned}
N O & =\sqrt{(3-1)^{2}+(1-4)^{2}} & & \text { Substitute. } \\
& =\sqrt{(2)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{4+9} & & \text { Square terms. } \\
& =\sqrt{13} & & \text { Addition. }
\end{aligned}
$$

$\overline{O M}$ has end points $O(3,1)$ and $M(0,-3)$.
$O M=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Substitute.

$$
\begin{aligned}
O M & =\sqrt{(0-3)^{2}+(-3-1)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-3)^{2}+(-4)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+16} & & \text { Square terms. } \\
& =\sqrt{25} & & \text { Addition. } \\
& =5 & & \text { Simplify. }
\end{aligned}
$$

Similarly, find the lengths of $\overline{Q R}, \overline{R S}$ and $\overline{S Q}$.
$\overline{Q R}$ has end points $Q(4,-1)$ and $R(6,1)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(6-4)^{2}+(1-(-1))^{2}} & & \text { Substitute. } \\
& =\sqrt{(2)^{2}+(2)^{2}} & & \text { Subtraction. } \\
& =\sqrt{4+4} & & \text { Square terms. } \\
& =\sqrt{8} & & \text { Addition. }
\end{aligned}
$$

$\overline{R S}$ has end points $R(6,1)$ and $S(9,-1)$.
$R S=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Substitute.

$$
\begin{aligned}
R S & =\sqrt{(9-6)^{2}+(-1-1)^{2}} & & \text { Substitute. } \\
& =\sqrt{(3)^{2}+(-2)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+4} & & \text { Square terms. } \\
& =\sqrt{13} & & \text { Addition. }
\end{aligned}
$$

4-4 Proving Triangles Congruent-SSS, SAS

$\overline{S Q}$ has end points $S(9,-1)$ and $Q(4,-1)$.
$S Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
S Q & =\sqrt{(4-9)^{2}+(-1-(-1))^{2}} & & \text { Substitute. } \\
& =\sqrt{(-5)^{2}+(0)^{2}} & & \text { Subtraction. } \\
& =\sqrt{25} & & \text { Square terms. } \\
& =5 & & \text { Simplify. }
\end{aligned}
$$

The corresponding sides are not congruent, so the triangles are not congruent.
ANSWER:
$M N=\sqrt{50}, N O=\sqrt{13}, M O=5, Q R=\sqrt{8}, R S=\sqrt{13}$, and $Q S=5$. The corresponding sides are not congruent, so the triangles are not congruent
11. $M(4,7), N(5,4), O(2,3), Q(2,5), R(3,2), S(0,1)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{M N}, \overline{N O}$ and $\overline{O M}$.
$\overline{M N}$ has end points $M(4,7)$ and $N(5,4)$.
$M N=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
M N & =\sqrt{(5-4)^{2}+(4-7)^{2}} & & \text { Substitute. } \\
& =\sqrt{(1)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+9} & & \text { Square terms. } \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

$\overline{N O}$ has end points $N(5,4)$ and $O(2,3)$.
$N O=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
N O & =\sqrt{(2-5)^{2}+(3-4)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-3)^{2}+(-1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+1} & & \text { Square term } . \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

$\overline{O M}$ has end points $O(2,3)$ and $M(4,7)$.

$$
O M=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
O M & =\sqrt{(4-2)^{2}+(7-3)^{2}} & & \text { Substitute. } \\
& =\sqrt{(2)^{2}+(4)^{2}} & & \text { Subtraction. } \\
& =\sqrt{4+16} & & \text { Square term s. } \\
& =\sqrt{20} & & \text { Addition. }
\end{aligned}
$$

Similarly, find the lengths of $\overline{Q R}, \overline{R S}$ and $\overline{S Q}$.
$\overline{Q R}$ has end points $Q(2,5)$ and $R(3,2)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(3-2)^{2}+(2-5)^{2}} & & \text { Substitute. } \\
& =\sqrt{(1)^{2}+(-3)^{2}} & & \text { Subtraction. } \\
& =\sqrt{1+9} & & \text { Square terms. } \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

$\overline{R S}$ has end points $R(3,2)$ and $S(0,1)$.
$R S=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
R S & =\sqrt{(0-3)^{2}+(1-2)^{2}} & & \text { Substitute. } \\
& =\sqrt{(-3)^{2}+(-1)^{2}} & & \text { Subtraction. } \\
& =\sqrt{9+1} & & \text { Square term s. } \\
& =\sqrt{10} & & \text { Addition. }
\end{aligned}
$$

$\overline{S Q}$ has end points $S(0,1)$ and $Q(2,5)$.
$S Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{array}{rlrl}
S Q & =\sqrt{(2-0)^{2}+(5-1)^{2}} & & \text { Substitute. } \\
& =\sqrt{(2)^{2}+(4)^{2}} & & \text { Subtraction. } \\
& =\sqrt{4+16} & & \text { Square term s. } \\
& =\sqrt{20} & & \text { Addition. } \\
\text { So, } \overline{M N} \cong \overline{Q R}, \overline{N O} \cong \overline{R S} \text { and } \overline{O M} \cong \overline{S Q} .
\end{array}
$$

Each pair of corresponding sides has the same measure so they are congruent. $\triangle M N O \cong \triangle Q R S$ by SSS.
ANSWER:
$M N=\sqrt{10}, N O=\sqrt{10}, M O=\sqrt{20}, Q R=\sqrt{10}, R S=\sqrt{10}$, and $Q S=\sqrt{20}$. Each pair of corresponding sides has the same measure, so they are congruent. $\triangle M N O \cong \triangle Q R S$ by SSS.

PROOF Write the specified type of proof.

12. two-column proof

Given: $\overline{B D} \perp \overline{A C}$, $\overline{B D}$ bisects $\overline{A C}$.
Prove: $\triangle A B D \cong \triangle C B D$

SOLUTION:

Proof: Statements (Reasons)

1. $\overline{B D} \perp \overline{A C}, \overline{B D}$ bisects $\overline{A C}$. (Given)
2. $\angle B D A$ and $\angle B D C$ are right angles. (Def. of \perp)
3. $\angle B D A \cong \angle B D C$ (all right angles are \cong)
4. $\overline{A D} \cong \overline{D C}$ (Def. of bisects)
5. $\overline{B D} \cong \overline{B D}$ (Ref. Prop.)
6. $\triangle A B D \cong \triangle C B D$ (SAS)

ANSWER:
Proof: Statements (Reasons)

1. $\overline{B D} \perp \overline{A C}, \overline{B D}$ bisects $\overline{A C}$. (Given)
2. $\angle B D A$ and $\angle B D C$ are right angles. (Def. of \perp)
3. $\angle B D A \cong \angle B D C$ (all right angles are \cong)
4. $\overline{A D} \cong \overline{D C}$ (Def. of bisects)
5. $\overline{B D} \cong \overline{B D}$ (Ref. Prop.)
6. $\triangle A B D \cong \triangle C B D$ (SAS)

4-4 Proving Triangles Congruent-SSS, SAS

13. paragraph proof

Given: R is the midpoint of $\overline{Q S}$ and $\overline{P T}$.
Prove: $\triangle P R Q \cong \triangle T R S$

SOLUTION:

Since R is the midpoint of $\overline{Q S}$ and $\overline{P T}, \overline{P R} \cong \overline{R T}$ and $\overline{R Q} \cong \overline{R S}$ by definition of a midpoint. . $\angle P R Q \cong \angle T R S$ by the Vertical Angles Theorem.
So, $\triangle P R Q \cong \triangle T R S$ by SAS.

ANSWER:

Since R is the midpoint of $\overline{Q S}$ and $\overline{P T}, \overline{P R} \cong \overline{R T}$ and $\overline{R Q} \cong \overline{R S}$ by definition of a midpoint. $\angle P R Q \cong \angle T R S$ by the Vertical Angles Theorem.
So, $\triangle P R Q \cong \triangle T R S$ by SAS.

4-4 Proving Triangles Congruent-SSS, SAS

PROOF Write the specified type of proof.
14. flow proof

Given: $\overline{J M} \cong \overline{N K} ; L$ is the midpoint of $\overline{J N}$ and $\overline{K M}$.
Prove: $\angle M J L \cong \angle K N L$

SOLUTION:
Proof:

ANSWER:
Proof:

15. paragraph proof

Given: $\triangle X Y Z$ is equilateral. $\overline{W Y}$ bisects $\angle Y$.
Proof: $\overline{X W} \cong \overline{Z W}$

SOLUTION:

Proof: We know that $\overline{W Y}$ bisects $\angle Y$, so $\angle X Y W \cong \angle Z Y W$. Also, $\overline{Y W} \cong \overline{Y W}$ by the Reflexive Property. Since $\triangle X Y Z$ is equilateral it is a special type of isosceles triangle, so $\overline{X Y} \cong \overline{Z Y}$. By the Side-Angle-Side Congruence Postulate, $\triangle X Y W \cong \triangle Z Y W$. By CPCTC, $\overline{X W} \cong \overline{Z W}$.

ANSWER:
Proof: We know that $\overline{W Y}$ bisects $\angle Y$, so $\angle X Y W \cong \angle Z Y W$. Also, $\overline{Y W} \cong \overline{Y W}$ by the Reflexive Property. Since $\Delta X Y Z$ is equilateral it is a special type of isosceles triangle, so $\overline{X Y} \cong \overline{Z Y}$. By the Side-Angle-Side Congruence Postulate, $\triangle X Y W \cong \triangle Z Y W$ By CPCTC, $\overline{X W} \cong \overline{Z W}$

CCSS ARGUMENTS Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove congruence, write not possible.
16.

SOLUTION:

The corresponding sides are congruent; SSS.
ANSWER:
SSS
17.

SOLUTION:

The triangles have two corresponding sides congruent but no information is given about the included angle or the third pair of sides; not possible.

ANSWER:
not possible

4-4 Proving Triangles Congruent-SSS, SAS

18.

SOLUTION:

Information is given about two pairs of corresponding sides and one pair of corresponding angles but the congruent angles are not in the interior of the congruent sides; not possible.

ANSWER:
not possible
19.

SOLUTION:

The triangles have two pairs of corresponding sides congruent and the interior angles are congruent; SAS.
ANSWER:
SAS

4-4 Proving Triangles Congruent-SSS, SAS

20. SIGNS Refer to the diagram.
a. Identify the three-dimensional figure represented by the wet floor sign.
b. If $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$, prove that $\triangle A C B \cong \triangle A C D$.
c. Why do the triangles not look congruent in the diagram?

SOLUTION:

a. triangular pyramid
b. Given: $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$

Prove: $\triangle A C B \cong \triangle A C D$.
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$ (Given)
2. $\overline{A C} \cong \overline{A C}$ (Refl. Prop.)
3. $\triangle A C B \cong \triangle A C D$. (SSS)
c. Sample answer: The object is three-dimensional, so when it is viewed in two dimensions, the perspective makes it look like the triangles are differently shaped.

ANSWER:

a. triangular pyramid
b. Given: $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$

Prove: $\triangle A C B \cong \triangle A C D$
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$ (Given)
2. $\overline{A C} \cong \overline{A C}$ (Refl. Prop.)
3. $\triangle A C B \cong \triangle A C D$. (SSS)
c. Sample answer: The object is three-dimensional, so when it is viewed in two dimensions, the perspective makes it look like the triangles are differently shaped.

PROOF Write a flow proof.

21. Given: $\overline{M J} \cong \overline{M L} ; K$ is the midpoint of $\overline{J L}$.

Prove: $\triangle M J K \cong \triangle M L K$

SOLUTION:
Proof:

ANSWER:
Proof:

22. Given: $\triangle T P Q \cong \triangle S P R$

$$
\angle T Q R \cong \angle S R Q
$$

Prove: $\triangle T Q R \cong \triangle S R Q$

SOLUTION:

Proof:

ANSWER:
Proof:

23. SOFTBALL Use the diagram of a fast-pitch softball diamond shown. Let $F=$ first base, $S=$ second base, $T=$ third base, $P=$ pitcher's point, and $R=$ home plate.
a. Write a two-column proof to prove that the distance from first base to third base is the same as the distance from home plate to second base.
b. Write a two-column proof to prove that the angle formed between second base, home plate, and third base is the same as the angle formed between second base, home plate, and first base.

SOLUTION:

a. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$
$\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles.
Prove: $\overline{R S} \cong \overline{T F}$

Proof:
Statements (Reasons)

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)
2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles (Given)
3. $\angle S T R \cong \angle T R F$ (All $\mathrm{rt} \angle \mathrm{s}$ are \cong.)
4. $\triangle S T R \cong \triangle T R F$ (SAS)
5. $\overline{R S} \cong \overline{T F}$ (CPCTC)
b. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$
$\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles.
Prove: $\angle S R T \cong \angle S R F$

Proof:
Statements (Reasons)

4-4 Proving Triangles Congruent-SSS, SAS

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)
2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles (Given)
3. $\angle S T R \cong \angle S F R$ (All $\mathrm{rt} \angle \mathrm{s}$ are \cong.)
4. $\triangle S T R \cong \triangle S F R$ (SAS)
5. $\angle S R T \cong \angle S R F$ (CPCTC)

ANSWER:
a. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$
$\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles.
Prove: $\overline{R S} \cong \overline{T F}$

Proof:
Statements (Reasons)

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)
2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles. (Given)
3. $\angle S T R \cong \angle T R F(\mathrm{All} \mathrm{rt} \angle \mathrm{s}$ are \cong.
4. $\triangle S T R \cong \triangle T R F$ (SAS)
5. $\overline{R S} \cong \overline{T F}$ (CPCTC)
b. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$
$\angle T S F, \angle S F H, \angle F H T$, and $\angle H T S$ are right $\angle \mathrm{s}$.
Prove: $\angle S R T \cong \angle S R F$

Proof:
Statements (Reasons)

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)
2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles. (Given)
3. $\angle S T R \cong \angle S F R$ (All rt $\angle \mathrm{s}$ are \cong.)
4. $\triangle S T R \cong \triangle S F R$ (SAS)
5. $\angle S R T \cong \angle S R F$ (СРCTC)

PROOF Write a two-column proof.
24. Given: $\overline{Y X} \cong \overline{W Z}, \overline{Y X} \| \overline{Z W}$

Prove: $\triangle Y X Z \cong \triangle W Z X$

SOLUTION:
Proof:
Statements (Reasons)

1. $\overline{Y X} \cong \overline{W Z}, \overline{Y X} \| \overline{Z W}$ (Given)
2. $\angle Y X Z \cong \angle W Z X$ (Alt. Int. $\angle \mathrm{s}$)
3. $\overline{X Z} \cong \overline{Z X}$ (Reflex. Prop.)
4. $\triangle Y X Z \cong \triangle W Z X$ (SAS)

ANSWER:
Proof:
Statements (Reasons)

1. $\overline{Y X} \cong \overline{W Z}, \overline{Y X} \| \overline{Z W}$ (Given)
2. $\angle Y X Z \cong \angle W Z X$ (Alt. In/t. $\angle \mathrm{s}$)
3. $\overline{X Z} \cong \overline{Z X}$ (Reflex. Prop.)
4. $\triangle Y X Z \cong \triangle W Z X$ (SAS)

4-4 Proving Triangles Congruent-SSS, SAS

25. Given: $\triangle E A B \cong \triangle D C B$

Prove: $\triangle E A D \cong \triangle D C E$

SOLUTION:

Proof:
Statements (Reasons)

1. $\triangle E A B \cong \triangle D C B$ (Given)
2. $\overline{E A} \cong \overline{D C}$ (CPCTC)
3. $\overline{E D} \cong \overline{D E}$ (Reflex. Prop.)
4. $\overline{A B} \cong \overline{C B}$ (СРСТС)
5. $\overline{D B} \cong \overline{E B}$ (СРСТС)
6. $A B=C B, D B=E B$ (Def. § segments)
7. $A B+D B=C B+E B$ (Add. Prop. $=$)
8. $A D=A B+D B, C E=C B+E B$ (Segment addition)
9. $A D=C E$ (Subst. Prop. =)
10. $\overline{A D} \cong \overline{C E}$ (Def. \cong segments)
11. $\triangle E A D \cong \triangle D C E$ (SSS)

ANSWER:
Proof:
Statements (Reasons)

1. $\triangle E A B \cong \triangle D C B$ (Given)
2. $\overline{E A} \cong \overline{D C}$ (CPCTC)
3. $\overline{E D} \cong \overline{D E}$ (Reflex. Prop.)
4. $\overline{A B} \cong \overline{C B}$ (CPCTC)
5. $\overline{D B} \cong \overline{E B}$ (СРСТС)
6. $A B=C B, D B=E B$ (Def. \cong segments)
7. $A B+D B=C B+E B$ (Add. Prop. $=$)
8. $A D=A B+D B, C E=C B+E B$ (Segment addition)
9. $A D=C E$ (Subst. Prop. =)
10. $\overline{A D} \cong \overline{C E}$ (Def. \cong segments)
11. $\triangle E A D \cong \triangle D C E$ (SSS)

4-4 Proving Triangles Congruent-SSS, SAS

26. CCSS ARGUMENTS Write a paragraph proof.

Given: $\overline{H L} \cong \overline{H M}, \overline{P M} \cong \overline{K L}, \overline{P G} \cong \overline{K J}, \overline{G H} \cong \overline{J H}$
Prove: $\angle G \cong \angle J$

SOLUTION:

Proof: $\overline{G H} \cong \overline{J H}$ and $\overline{H L} \cong \overline{H M}$ so by the definition of congruence, $G H=J H$ and $H L=H M$. By the Segment Addition Postulate, $G L=G H+H L$ and $J M=J H+H M$. By substitution, $G L=J H+H M$ and $G L=J M$. By the definition of congruence, $\overline{G L} \cong \overline{J M} \cdot \overline{P M} \cong \overline{K L}$, so by the definition of congruence, $P M=K L . \overline{M L} \cong \overline{L M}$ by the Reflexive Property of Congruence, so by the definition of congruence, $M L=L M$. By the Segment Addition Postulate, $P L=P M+M L$ and $K M=K L+L M$. By substitution, $P L=K L+L M$ and $P L=K M$. By the definition of congruence, $\overline{P L} \cong \overline{K M} \cdot \overline{P G} \cong \overline{K J}$, so by SSS, $\triangle G P L \cong \triangle J K M$. By CPCTC, $\angle G \cong \angle J$.

ANSWER:
Proof: $\overline{G H} \cong \overline{J H}$ and $\overline{H L} \cong \overline{H M}$ so by the definition of congruence, $G H=J H$ and $H L=H M$. By the Segment Addition Postulate, $G L=G H+H L$ and $J M=J H+H M$. By substitution, $G L=J H+H M$ and $G L=J M$. By the definition of congruence, $\overline{G L} \cong \overline{J M} \cdot \overline{P M} \cong \overline{K L}$, so by the definition of congruence, $P M=K L . \overline{M L} \cong \overline{L M}$ by the Reflexive Property of Congruence, so by the definition of congruence, $M L=L M$. By the Segment Addition Postulate, $P L=P M+M L$ and $K M=K L+L M$. By substitution, $P L=K L+L M$ and $P L=K M$. By the definition of congruence, $\overline{P L} \cong \overline{K M} \cdot \overline{P G} \cong \overline{K J}$, so by SSS, $\triangle G P L \cong \triangle J K M$. By СРСТС, $\angle G \cong \angle J$.

ALGEBRA Find the value of the variable that yields congruent triangles. Explain. 27. $\triangle W X Y \cong \triangle W X Z$

SOLUTION:

Given that $\triangle W X Y \cong \triangle W X Z$, by CPCTC $\angle W X Z \cong \angle W X Y$ and $\overline{X Y} \cong \overline{X Z}$.
The value of y can be found using the sides or the angles.

$$
\begin{array}{rlrl}
\Delta W X Z & \cong & \cong W X Y & \\
m \angle P C T C \\
m X & =m \angle W X Y & & \text { Def. of congruence. } \\
90 & =20 y+10 & & \text { Substitution. } \\
80 & =20 y & & -10 \text { from each side. } \\
4 & =y & & \text { - each side by } 20 . \\
\overline{X Y} \cong \overline{X Z} & & \text { CPCTC. } \\
X Y & =X Z & & \text { Def. of congruence. } \\
3 y+7 & =19 & & \text { Substitution. } \\
3 y & =12 & & -12 \text { from each side. } \\
y & =4 & & \div \text { each side by } 3 .
\end{array}
$$

ANSWER:
$y=4 ;$ By СРСТС, $\triangle W X Z \cong \triangle W X Y$, and $\overline{Y X} \cong \overline{Z X}$.
28. $\triangle A B C \cong \triangle F G H$

SOLUTION:
$\triangle A B C \cong \Delta F G H$
By СРСТС, $\overline{A C} \cong \overline{F H}$.
By the definition of congruence, $A C=F H$.
Substitute.

$$
2 x+5=11 \quad A C=F H
$$

$$
2 x+5-5=11-5 \quad-5 \text { from each side. }
$$

$$
2 x=6 \quad \text { Simplify }
$$

$$
x=3 \quad \div \text { each side by } 2 .
$$

By CPCTC, $\overline{B C} \cong \overline{G H}$.
By the definition of congruence, $B C=G H$.
Substitute.

$$
7=3 x-2 \quad B C=G H
$$

$$
7+2=3 x-2+2 \quad+2 \text { to each side }
$$

$$
9=3 x \quad \text { Simplify }
$$

$$
3=x \quad \div \text { each side by } 3
$$

ANSWER:
$x=3$; By СРCTC, $\overline{A C} \cong \overline{F H}$, and $\overline{B C} \cong \overline{G H}$.

4-4 Proving Triangles Congruent-SSS, SAS

29. CHALLENGE Refer to the graph shown.
a. Describe two methods you could use to prove that $\triangle W Y Z$ is congruent to $\triangle W Y X$. You may not use a ruler or a protractor. Which method do you think is more efficient? Explain.
b. Are $\triangle W Y Z$ and $\triangle W Y X$ congruent? Explain your reasoning.

SOLUTION:

a. Sample answer:

Method 1: You could use the Distance Formula to find the length of each of the sides, and then use the Side-SideSide Congruence Postulate to prove the triangles congruent.

Method 2 : You could find the slopes of $\overline{Z X}$ and $\overline{W Y}$ to prove that they are perpendicular and that $\angle W Y Z$ and $\angle W Y X$ are both right angles. You can use the Distance Formula to prove that $\overline{X Y}$ is congruent to $\overline{Z Y}$. Since the triangles share the leg $\overline{W Y}$, you can use the Side-Angle-Side Congruence Postulate; Sample answer: I think that method 2 is more efficient, because you only have two steps instead of three.
b. Sample answer: Yes; the slope of $\overline{W Y}$ is -1 and the slope of $\overline{Z X}$ is 1 , and -1 and 1 are opposite reciprocals, so $\overline{W Y}$ is perpendicular to $\overline{Z X}$. Since they are perpendicular, $\angle W Y Z$ and $\angle W Y X$ are both 90°. Using the Distance Formula, the length of $\overline{Z Y}$ is $\sqrt{(4-1)^{2}+(5-2)^{2}}$ or $3 \sqrt{2}$, and the length of $\overline{X Y}$ is $\sqrt{(7-4)^{2}+(8-5)^{2}}$ or $3 \sqrt{2}$. Since $\overline{W Y}$ is congruent to $\overline{W Y}, \Delta W Y Z$ is congruent to $\Delta W Y X$ by the Side-Angle-Side Congruent Postulate.

ANSWER:
a. Sample answer: Method 1: You could use the Distance Formula to find the length of each of the sides, and then use the Side-Side-Side Congruence Postulate to prove the triangles congruent. Method 2 : You could find the slopes of $\overline{Z X}$ and $\overline{W Y}$ to prove that they are perpendicular and that $\angle W Y Z$ and $\angle W Y X$ are both right angles. You can use the Distance Formula to prove that $\overline{X Y}$ is congruent to $\overline{Z Y}$. Since the triangles share the leg $\overline{W Y}$ you can use the Side-Angle-Side Congruence Postulate; Sample answer: I think that method 2 is more efficient, because you only have two steps instead of three.
b. Sample answer: Yes; the slope of $\overline{W Y}$ is -1 and the slope of $\overline{Z X}$ is 1 , and -1 and 1 are opposite reciprocals, so $\overline{W Y}$ is perpendicular to $\overline{Z X}$. Since they are perpendicular, $\angle W Y Z$ and $\angle W Y X$ are both 90°. Using the Distance Formula, the length of $\overline{Z Y}$. is $\sqrt{(4-1)^{2}+(5-2)^{2}}$ or $3 \sqrt{2}$, and the length of $\overline{X Y}$ is $\sqrt{(7-4)^{2}+(8-5)^{2}}$ or $3 \sqrt{2}$. Since $\overline{W Y}$ is congruent to $\overline{W Y}, \Delta W Y Z$ is congruent to $\Delta W Y X$ by the Side-Angle-Side Congruent Postulate.
30. REASONING Determine whether the following statement is true orfalse. If true, explain your reasoning. If false, provide a counterexample.
If the congruent sides in one isosceles triangle have the same measure as the congruent sides in another isosceles triangle, then the triangles are congruent.

SOLUTION:

False, the triangles shown below are isosceles triangles with two pairs of sides congruent and the third pair of sides not congruent.

ANSWER:
false

31. ERROR ANALYSIS Bonnie says that $\triangle P Q R \cong \triangle X Y Z$ by SAS. Shada disagrees. She says that there is not enough information to prove that the two triangles are congruent. Is either of them correct? Explain.

SOLUTION:

Shada; for SAS the angle must be the included angle ($\angle R$ and $\angle Z$) and here it is not included.
ANSWER:
Shada; for SAS the angle must be the included angle and here it is not included.
32. OPEN ENDED Use a straightedge to draw obtuse triangle $A B C$. Then construct $\triangle X Y Z$ so that it is congruent to $\triangle A B C$ using either SSS or SAS. Justify your construction mathematically and verify it using measurement.
SOLUTION:
Sample answer: Using a ruler I measured all of the sides and they are congruent so the triangles are congruent by SSS.

ANSWER:
Sample answer: Using a ruler I measured all of the sides and they are congruent so the triangles are congruent by SSS.

4-4 Proving Triangles Congruent-SSS, SAS

33. WRITING IN MATH Two pairs of corresponding sides of two right triangles are congruent. Are the triangles congruent? Explain your reasoning.

SOLUTION:

Case 1: The two pairs of congruent angles includes the right angle. You know the hypotenuses are congruent and one of the legs are congruent. Then the Pythagorean Theorem says that the other legs are congruent so the triangles are congruent by SSS.
Case 2: The two pairs of congruent angles do not include the right angle. You know the legs are congruent and the right angles are the included angles and all right angles are congruent, then the triangles are congruent by SAS.

ANSWER:

Case 1: You know the hypotenuses are congruent and one of the legs are congruent. Then the Pythagorean Theorem says that the other legs are congruent so the triangles are congruent by SSS.
Case 2: You know the legs are congruent and the right angles are congruent, then the triangles are congruent by SAS.
34. ALGEBRA The Ross Family drove 300 miles to visit their grandparents. Mrs. Ross drove 70 miles per hour for 65% of the trip and 35 miles per hour or less for 20% of the trip that was left. Assuming that Mrs. Ross never went over 70 miles per hour, how many miles did she travel at a speed between 35 and 70 miles per hour?
A 195
B 84
C 21
D 18

SOLUTION:

For the 65% of the distance, she drove 70 miles per hour. So she covered $\frac{65}{100} \times 300$ or 195 miles.
The remaining distance is $300-195=105$ miles.
For the 20% of the remaining distance, she drove less than 35 miles per hour. So she covered $\frac{20}{100} \times 105$ or 21 miles.
So, totally she covered $195+21$ or 216 miles at the speed 70 miles per hour and less than 30 miles per hour. Bu the trip has 300 miles, so the remaining distance is $300-216$ or 84 miles. She has traveled 84 miles at a speed between 35 and 70 miles per hour. So, the correct option is B.

ANSWER:
B

4-4 Proving Triangles Congruent-SSS, SAS

35. In the figure, $\angle C \cong \angle Z$ and $\overline{A C} \cong \overline{X Z}$.

What additional information could be used to prove that $\triangle A B C \cong \triangle X Y Z$?
F $\overline{B C} \cong \overline{Y Z}$
G $\overline{A B} \cong \overline{X Y}$
H $\overline{B C} \cong \overline{X Z}$
J $\overline{X Z} \cong \overline{X Y}$

SOLUTION:

We can prove $\triangle A B C \cong \triangle X Y Z$ by SAS if we knew that $\overline{B C} \cong \overline{Y Z}$. So, the needed information is $\overline{B C} \cong \overline{Y Z}$. The correct option is F.

ANSWER:
F
36. EXTENDED RESPONSE The graph below shows the eye colors of all of the students in a class. What is the probability that a student chosen at random from this class will have blue eyes? Explain your reasoning.

SOLUTION:

$\frac{3}{20}$; First you have to find how many students there are in the class. There are $1+2+3+14$ or 20 . Then the probability of randomly choosing a student with blue eyes is the number of students with blue eyes divided by 20. Since there are 3 students with blue eyes, the probability is $\frac{3}{20}$.

ANSWER:

$\frac{3}{20}$; First you have to find how many students there are in the class. There are $1+2+3+14$ or 20 . Then the probability of randomly choosing a student with blue eyes is the number of students with blue eyes divided by 20. Since there are 3 students with blue eyes, the probability is $\frac{3}{20}$;

4-4 Proving Triangles Congruent-SSS, SAS

37. SAT/ACT If $4 a+6 b=6$ and $-2 a+b=-7$, what is the value of a ?

A - 2
B -1
C 2
D 3
E 4

SOLUTION:

Solve the equation $-2 a+b=-7$ for b.

$$
\begin{aligned}
-2 a+b & =-7 & & \text { Original equation } \\
-2 a+2 a+b & =2 a-7 & & +2 a \text { to each side. } \\
b & =2 a-7 & & \text { simplify } .
\end{aligned}
$$

Substitute $b=2 a-7$ in $4 a+6 b=6$.

$$
4 a+6 b=6 \quad \text { Original equation }
$$

$$
4 a+6(2 a-7)=6 \quad \text { Substitution }
$$

$$
\begin{aligned}
4 a+12 a-42 & =6 & & \text { Distributive Property } \\
16 a-42 & =6 & & \text { Simplify } . \\
16 a-42+42 & =6+42 & & +42 \text { to each side. } \\
16 a & =48 & & \text { Simplify. } \\
a & =3 & & \text { Divide each side by } 16 .
\end{aligned}
$$

So, the correct option is D.
ANSWER:
D

In the diagram, $\square L M N P \cong \square Q R S T$.

38. Find x.

SOLUTION:

By CPCTC, $\overline{P L} \cong \overline{T Q}$.
By the definition of congruence, $P L=T Q$.
Substitute.

$$
\begin{aligned}
P L & =T Q & & \text { CPCTC } \\
3 x+5 & =2 x+10 & & \text { Substitution. } \\
3 x+5-2 x & =2 x+10-2 x & & -2 x \text { from each side. } \\
x+5 & =10 & & \text { Simplify. } \\
x+5-5 & =10-5 & & -5 \text { from each side. } \\
x & =5 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
5
39. Find y.

SOLUTION:

By СРСТС, $\angle R \cong \angle M$.
By the definition of congruence, $m \angle R=m \angle M$. Substitute.

$$
\begin{aligned}
m \angle R & =m \angle M & & \text { CPCTC. } \\
2 y-12 & =y+6 & & \text { Substitution. } \\
2 y-12-y & =y+6-y & & -y \text { from each side. } \\
y-12 & =6 & & \text { Simplify. } \\
y-12+12 & =6+12 & & +12 \text { to each side. } \\
y & =18 & & \text { Simplify. }
\end{aligned}
$$

ANSWER:
18
40. ASTRONOMY The Big Dipper is a part of the larger constellation Ursa Major. Three of the brighter stars in the constellation form $\triangle R S A$. If $m \angle R=41$ and $m \angle S=109$, find $m \angle A$.

SOLUTION:

The sum of the measures of the angles of a triangle is 180 . So, $m \angle R+m \angle S+m \angle A=180$.
$m \angle R+m \angle S+m \angle A=180$
Triangle Angle-Sum Thm.
$41+109+m \angle A=180 \quad$ Substitute.
$150+m \angle A=180 \quad$ Addition.
$150+m \angle A-150=180-150-150$ from each side.
$m \angle A=30 \quad$ Simplify.
ANSWER:
30

4-4 Proving Triangles Congruent-SSS, SAS

Write an equation in slope-intercept form for each line.

41. $(-5,-3)$ and $(10,-6)$

SOLUTION:
Substitute the values in the slope formula.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Slope Formula } \\
& =\frac{-6-(-3)}{10-(-5)} & & \text { Substitute. } \\
& =\frac{-3}{15} & & \text { Subtraction. } \\
& =-\frac{1}{5} & & \text { Simplify. }
\end{aligned}
$$

Therefore, the slope of the line is $-\frac{1}{5}$.
Use the slope and one of the points to write the equation of the line in point-slope form.
The point-slope form of a line is $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.
Here, $m=-\frac{1}{5}$ and $\left(x_{1}, y_{1}\right)=(-5,-3)$.
So, the equation of the line is

$$
\begin{aligned}
y-(-3) & =-\frac{1}{5}(x-(-5)) . & & \text { Substitution } \\
y+3 & =-\frac{1}{5} x-1 & & \text { Simplify. } \\
y+3-3 & =-\frac{1}{5} x-1-3 & & -3 \text { from each side. } \\
y & =-\frac{1}{5} x-4 & & \text { Subtraction. }
\end{aligned}
$$

ANSWER:
$y=-\frac{1}{5} x-4$

4-4 Proving Triangles Congruent-SSS, SAS

42. $(4,-1)$ and $(-2,-1)$

SOLUTION:

Substitute the values in the slope formula.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Slope Form ula } \\
& =\frac{-1-(-1)}{-2-4} & & \text { Substitute. } \\
& =0 & & \text { Simplify. }
\end{aligned}
$$

Therefore, the slope of the line is 0 .
Use the slope and one of the points to write the equation of the line in point-slope form.
The point-slope form of a line is $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Here, $m=0$ and $\left(x_{1}, y_{1}\right)=(4,-1)$.
So, the equation of the line is

$$
y-(-1)=0(x-4)
$$

$$
y+1=0
$$

$$
y=-1
$$

ANSWER:
$y=-1$
43. $(-4,-1)$ and $(-8,-5)$

SOLUTION:

Substitute the values in the slope formula.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Slope F orm ula } \\
& =\frac{-5-(-1)}{-8-(-4)} & & \text { Substitute. } \\
& =\frac{-4}{-4} & & \text { Subtraction. } \\
& =1 & & \text { Simplify }
\end{aligned}
$$

Therefore, the slope of the line is 1 .
Use the slope and one of the points to write the equation of the line in point-slope form.
The point-slope form of a line is $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Here, $m=1$ and $\left(x_{1}, y_{1}\right)=(-4,-1)$.
So, the equation of the line is
$y-(-1)=1(x-(-4))$

$$
\begin{array}{r}
y+1=x+4 \\
y=x+3
\end{array}
$$

ANSWER:

$y=x+3$
Determine the truth value of each conditional statement. If true, explain your reasoning. Iffalse, give a counterexample.
44. If $x^{2}=25$, then $x=5$.

SOLUTION:

The conditional statement "If $x^{2}=25$, then $x=5$." is false. A counterexample is " If $x=-5,(-5)^{2}=25$ ". The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false.

ANSWER:
False; if $x=-5,(-5)^{2}=25$. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false.
45. If you are 16, you are a junior in high school.

SOLUTION:

The conditional statement "If you are 16, you are a junior in high school." is false. A counterexample is " a 16-yearold could be a freshman, sophomore, junior, or senior". The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false.

ANSWER:

False; a 16-year-old could be a freshman, sophomore, junior, or senior. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false.

4-4 Proving Triangles Congruent-SSS, SAS

State the property that justifies each statement.
46. $A B=A B$

SOLUTION:
Reflexive Prop.
ANSWER:
Reflexive Prop.
47. If $E F=G H$ and $G H=J K$, then $E F=J K$.

SOLUTION:
Transitive Prop.
ANSWER:
Transitive Prop.
48. If $a^{2}=b^{2}-c^{2}$, then $b^{2}-c^{2}=a^{2}$.

SOLUTION:
Symmetric Prop.
ANSWER:
Symmetric Prop.
49. If $X Y+20=Y W$ and $X Y+20=D T$, then $Y W=D T$.

SOLUTION:
Substitution Prop.
ANSWER:
Substitution Prop.

