1. NAVIGATION To chart a course, sailors use aparallel ruler. One edge of the ruler is placed along the line representing the direction of the course to be taken. Then the other ruler is moved until its edge reaches the compass rose printed on the chart. Reading the compass determines which direction to travel. The rulers and the crossbars of the tool form $\quad \square M N P Q$.

Refer to Page 407.
a. If $m \angle N M Q=32$, find $m \angle M N P$.
b. If $m \angle M Q P=125$, find $m \angle M N P$
c. If $M Q=4$, what is $N P$?

SOLUTION:

a. Angles $N M Q$ and $M N P$ are consecutive angles. Consecutive angles in a parallelogram are supplementary.

So, $m \angle N M Q+m \angle M N P=180$.
Substitute.
$32+m \angle M N P=180$
$m \angle M N P=148$
b. Angles $M Q P$ and $M N P$ are opposite angles. Opposite angles of a parallelogram are congruent.

So, $m \angle M Q P=m \angle M N P=125$.
c. $\overline{M Q}$ and $\overline{N P}$ are opposite sides. Opposite sides of a parallelogram are congruent.

So, $M Q=N P=4$.
ANSWER:
a. 148
b. 125
c. 4

ALGEBRA Find the value of each variable in each parallelogram.
2.

SOLUTION:

Opposite angles of a parallelogram are congruent.
So, $2 x-1=75$.
Solve for x.
$2 x-1=75$
$2 x=76$
$x=38$
ANSWER:
38
3.

SOLUTION:

Opposite sides of a parallelogram are congruent.
So, $y-4=11$.
Solve for y.
$y-4=11$
$y=15$
ANSWER:
15
4.

SOLUTION:

Diagonals of a parallelogram bisect each other.
So, $a-7=2$ and $2 b-6=10$.
Solve for a and b.
So, $a=9$ and $b=8$.
ANSWER:
$a=9, b=8$
5.

SOLUTION:

Diagonals of a parallelogram bisect each other.
So, $2 b+5=3 b+1$ and $4 w-7=2 w+3$.
Solve for b.
$2 b+5=3 b+1$
$2 b=3 b-4$
$-b=-4$
$b=4$
Solve for w.
$4 w-7=2 w+3$
$4 w=2 w+10$
$2 w=10$
$w=5$
ANSWER:
$w=5, b=4$
6. COORDINATE GEOMETRY Determine the coordinates of the intersection of the diagonals of $\square A B C D$ with vertices $A(-4,6), B(5,6), C(4,-2)$, and $D(-5,-2)$.

SOLUTION:

Since the diagonals of a parallelogram bisect each other, their intersection point is the midpoint of $\overline{A C}$ or the midpoint of $\overline{B D}$. Find the midpoint of $\overline{A C}$. Use the Midpoint Formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substitute.
$\left(\frac{-4+4}{2}, \frac{6-2}{2}\right)=(0,2)$
The coordinates of the intersection of the diagonals of parallelogram $A B C D$ are $(0,2)$.
ANSWER:
(0, 2)

PROOF Write the indicated type of proof.

7. paragraph

Given: $\triangle A B C D, \angle A$ is a right angle.
Prove: $\angle B, \angle C$, and $\angle D$ are right angles. (Theorem 6.6)

SOLUTION:

Begin by listing what is known. Since $A B C D$ is a parallelogram, the properties of parallelograms apply. Each pair of opposite sides are parallel and congruent and each pair of opposite angles are congruent. It is given that $\angle A$ is a right angle so $\overline{A C} \perp \overline{A B}$.

Given: $\square A B C D, \angle A$ is a right angle.
Prove: $\angle B, \angle C$, and $\angle D$ are right angles. (Theorem 6.6)
Proof: By definition of a parallelogram, $\overline{A B} \| \overline{C D}$. Since $\angle A$ is a right angle, $\overline{A C} \perp \overline{A B}$. By the Perpendicular Transversal Theorem, $\overline{A C} \perp \overline{C D} . \angle C$ is a right angle, because perpendicular lines form a right angle. $\angle B \cong \angle C$ and $\angle A \cong \angle D$ because opposite angles in a parallelogram are congruent. $\angle C$ and $\angle D$ are right angles, since all right angles are congruent.

ANSWER:

Given: $\triangle A B C D, \angle A$ is a right angle.
Prove: $\angle B, \angle C$, and $\angle D$ are right angles. (Theorem 6.6)
Proof: By definition of a parallelogram, $\overline{A B} \| \overline{C D}$. Since $\angle A$ is a right angle, $\overline{A C} \perp \overline{A B}$. By the Perpendicular
Transversal Theorem, $\overline{A C} \perp \overline{C D} . \angle C$ is a right angle, because perpendicular lines form a right angle.
$\angle B \cong \angle C$ and $\angle A \cong \angle D$ because opposite angles in a parallelogram are congruent. $\angle C$ and $\angle D$ are right angles, since all right angles are congruent.
8. two-column

Given: $A B C H$ and $D C G F$ are
parallelograms.
Prove: $\angle A \cong \angle F$

SOLUTION:

First list what is known. Since $A B C H$ and $D C G F$ are parallelograms, the properties of parallelograms apply. From the figure, $\angle B C H$ and $\angle D C G$ are vertical angles.

Given: $A B C H$ and $D C G F$ are parallelograms.
Prove: $\angle A \cong \angle F$

Proof:
Statements (Reasons)

1. $A B C H$ and $D C G F$ are parallelograms.(Given)
2. $\angle B C H \cong \angle D C G$ (Vert. $\angle s$ are \cong)
3. $\angle A \cong \angle B C H$ and $\angle D C G \cong \angle F(\mathrm{Opp} . \angle s$ of a \square are $\cong)$
4. $\angle A \cong \angle F$ (Substitution.)

ANSWER:
Given: $A B C H$ and $D C G F$ are parallelograms.
Prove: $\angle A \cong \angle F$

Proof:
Statements (Reasons)

1. $A B C H$ and $D C G F$ are parallelograms.(Given)
2. $\angle B C H \cong \angle D C G$ (Vert. $\angle s$ are \cong)
3. $\angle A \cong \angle B C H$ and $\angle D C G \cong \angle F$ (Opp. $\angle s$ of a \square are $\cong)$
4. $\angle A \cong \angle F$ (Substitution.)

Use $\square P Q R S$ to find each measure.

9. $m \angle R$

SOLUTION:

Consecutive angles in a parallelogram are supplementary.
So, $m \angle Q+m \angle R=180$.
Substitute.
$128+m \angle R=180$
$m \angle R=52$
ANSWER:
52
10. $Q R$

SOLUTION:

Opposite sides of a parallelogram are congruent.
So, $P S=Q R=3$.
ANSWER:
3
11. $Q P$

SOLUTION:
Opposite sides of a parallelogram are congruent.
So, $R S=Q P=5$.
ANSWER:
5
12. $m \angle S$

SOLUTION:

Opposite angles of a parallelogram are congruent.
So, $m \angle Q=m \angle S=128$.
ANSWER:
128
13. HOME DECOR The slats on Venetian blinds are designed to remain parallel in order to direct the path of light coming in a widow. In $\square F G H J, F J=\frac{3}{4}$ inch, $F G=1 \mathrm{inch}$, and $\angle J H G=62$. Find each measure.

a. JH
b. $G H$
c. $m \angle J F G$
d. $m \angle F J H$

SOLUTION:

a. Opposite sides of a parallelogram are congruent.

So, $F G=J H=1$ inch.
b. Opposite sides of a parallelogram are congruent.

So, $G H=F J=\frac{3}{4}$ in.
c. Opposite angles of a parallelogram are congruent.

So, $m \angle J F G=m \angle J H G=62$.
d. Consecutive angles in a parallelogram are supplementary.

So, $m \angle F J H+m \angle J H G=180$.
Substitute.

$$
\begin{aligned}
m \angle F J H+62 & =180 \\
m \angle F J H & =118
\end{aligned}
$$

ANSWER:
a. 1 in.
b. $\frac{3}{4}$ in
c. 62
d. 118
14. CCSS MODELING Wesley is a member of the kennel club in his area. His club uses accordion fencing like the section shown at the right to block out areas at dog shows.

a. Identify two pairs of congruent segments.
b. Identify two pairs of supplementary angles.

SOLUTION:

a. Opposite sides of a parallelogram are congruent.

$$
\overline{P S} \cong \overline{Q R}, \overline{P Q} \cong \overline{S R}
$$

b. Consecutive angles of a parallelogram are supplementary.

Sample answer: $\angle P$ and $\angle Q, \angle S$ and $\angle R$
ANSWER:
a. $\overline{P S} \cong \overline{Q R}, \overline{P Q} \cong \overline{S R}$
b. Sample answer: $\angle P$ and $\angle Q, \angle S$ and $\angle R$

ALGEBRA Find the value of each variable in each parallelogram.

15.

SOLUTION:

Opposite sides of a parallelogram are congruent.
So, $4 a=3 a+7$ and $2 b=b+11$.
Solve for a.
$4 a=3 a+7$
$a=7$
Solve for b.
$2 b=b+11$
$b=11$
ANSWER:
$a=7, b=11$
16.

SOLUTION:

Consecutive angles in a parallelogram are supplementary.
So, $101+x=180$.
Solve for x.
$101+x=180$
$x=79$
Opposite angles of a parallelogram are congruent.
So, $y=m \angle Q=101$.

ANSWER:

$x=79, y=101$

17.

SOLUTION:

Diagonals of a parallelogram bisect each other.
So, $y-7=10$ and $x+6=11$.
Solve for y.
$y-7=10$
$y=17$
Solve for x.
$x+6=11$
$x=5$
ANSWER:
$x=5, y=17$

6-2 Parallelograms

18.

SOLUTION:

Opposite sides of a parallelogram are congruent.

$$
\text { So, } 3 b+5=b+11 \text { and } a+15=3 a+11
$$

Solve for a.
$a+15=3 a+11$
$-2 a=-4$
$a=2$
Solve for b.
$3 b+5=b+11$

$$
2 b=6
$$

$$
b=3
$$

ANSWER:
$a=2, b=3$

6-2 Parallelograms

19.

SOLUTION:

Consecutive angles in a parallelogram are supplementary.
So, $(x-5)+(2 x+11)=180$.
Solve for x.

$$
\begin{aligned}
(x-5)+(2 x+11) & =180 \\
x-5+2 x+11 & =180 \\
3 x+6 & =180 \\
3 x & =174 \\
x & =58
\end{aligned}
$$

Substitute $x=58$ in $m \angle H$.

$$
\begin{aligned}
m \angle H & =2 x+11 \\
& =2(58)+11 \\
& =116+11 \\
& =127
\end{aligned}
$$

Opposite angles of a parallelogram are congruent.
So, $m \angle F=m \angle H$.
Substitute.
$2 y=127$
$y=63.5$
ANSWER:
$x=58, y=63.5$
20.

SOLUTION:

Diagonals of a parallelogram bisect each other. So, $2 z+7=z+9$ and $3 y-5=y+5$.
Solve for z.
$2 z+7=z+9$
$z=2$
Solve for y.
$3 y-5=y+5$
$2 y=10$
$y=5$
ANSWER:
$z=2, y=5$
COORDINATE GEOMETRY Find the coordinates of the intersection of the diagonals of $\square W X Y Z$ with the given vertices.
21. $W(-1,7), X(8,7), Y(6,-2), Z(-3,-2)$

SOLUTION:

Since the diagonals of a parallelogram bisect each other, their intersection point is the midpoint of $\overline{W Y}$ or the midpoint of $\overline{X Z}$. Find the midpoint of $\overline{W Y}$. Use the Midpoint Formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substitute.
$\left(\frac{-1+6}{2}, \frac{7-2}{2}\right)=(2.5,2.5)$
The coordinates of the intersection of the diagonals of parallelogram $W X Y Z$ are $(2.5,2.5)$.
ANSWER:
(2.5, 2.5)
22. $W(-4,5), X(5,7), Y(4,-2), Z(-5,-4)$

SOLUTION:

Since the diagonals of a parallelogram bisect each other, their intersection point is the midpoint of $\overline{W Y}$ or the midpoint of $\overline{X Z}$. Find the midpoint of $\overline{W Y}$.
Use the Midpoint Formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Substitute.
$\left(\frac{-4+4}{2}, \frac{5-2}{2}\right)=(0,1.5)$
The coordinates of the intersection of the diagonals of parallelogram $W X Y Z$ are $(0,1.5)$.
ANSWER:
(0, 1.5)

PROOF Write a two-column proof.

23. Given: $W X T V$ and $Z Y V T$ are parallelograms.

Prove: $\overline{W X} \cong \overline{Z Y}$

SOLUTION:

Begin by listing the known information. It is given that $W X T V$ and $Z Y V T$ are parallelograms so the properties of parallelograms apply. From the figure, these two parallelograms share a common side, $\overline{V T}$.

Given: $W X T V$ and $Z Y V T$ are parallelograms.
Prove: $\overline{W X} \cong \overline{Z Y}$

Proof:
Statements (Reasons)

1. WXTV and ZYVT are parallelograms. (Given)
2. $\overline{W X} \cong \overline{V T, V T} \cong \overline{Y Z}$ (Opp. Sides of a \square are \cong.)
3. $\overline{W X} \cong \overline{Z Y}$ (Trans. Prop.)

ANSWER:
Given: $W X T V$ and $Z Y V T$ are parallelograms.
Prove: $\overline{W X} \cong \overline{Z Y}$

Proof:
Statements (Reasons)

1. WXTV and ZYVT are parallelograms. (Given)
2. $\overline{W X} \cong \overline{V T}, \overline{V T} \cong \overline{Y Z}$ (Opp. Sides of a \square are \cong.)
3. $\overline{W X} \cong \overline{Z Y}$ (Trans. Prop.)
4. Given: $\square B D H A, \overline{C A} \cong \overline{C G}$

Prove: $\angle B D H \cong \angle G$

SOLUTION:

Begin by listing the known information. It is given that BDHA is a parallelogram so the properties of a parallelogram apply. It is also given that $\overline{C A} \cong \overline{C G}$. From the figure, $\triangle A C G$ has sides $\overline{C A}$ and $\overline{C G}$. Since two sides are congruent, $\triangle A C G$ must be an isosceles triangle.

Given: $\square B D H A, \overline{C A} \cong \overline{C G}$
Prove: $\angle B D H \cong \angle G$

Proof:
Statements (Reasons)

1. $\square B D H A, \overline{C A} \cong \overline{C G}$ (Given)
2. $\angle A \cong \angle B D H$ (Opp. $\angle s$ of a \square are \cong.)
3. $\angle A \cong \angle G$ (Isos. Δ Thm.)
4. $\angle B D H \cong \angle G$ (Trans. Prop.)

ANSWER:
Given: $\square B D H A, \overline{C A} \cong \overline{C G}$
Prove: $\angle B D H \cong \angle G$

Proof:
Statements (Reasons)

1. $\square B D H A, \overline{C A} \cong \overline{C G}$ (Given)
2. $\angle A \cong \angle B D H$ (Opp. $\angle s$ of a \square are \cong.)
3. $\angle A \cong \angle G$ (Isos. \triangle Thm.)
4. $\angle B D H \cong \angle G$ (Trans. Prop.)
5. FLAGS Refer to the Alabama state flag at the right.

Given: $\triangle A C D \cong \triangle C A B$
Prove: $\overline{D P} \cong \overline{P B}$

SOLUTION:

Begin by listing the known information. It is given that $\triangle A C D \cong \triangle C A B$. From CPCTC, $\angle A C D \cong \angle C A B, \angle D \cong \angle B$, $\overline{A D} \cong \overline{C B}$, and $\overline{A B} \cong \overline{C D}$. In order to prove that $\overline{D P} \cong \overline{P B}$, show that $\triangle A B P \cong \triangle C D P$.

Proof:
Statements (Reasons):

1. $\triangle A C D \cong \triangle C A B$ (Given)
2. $\angle A C D \cong \angle C A B$ (СРСТС)
3. $\angle D P C \cong \angle B P A($ Vert. $\angle s$ are \cong.
4. $\overline{A B} \cong \overline{C D}$ (СРСТС)
5. $\triangle A B P \cong \triangle C D P$ (AAS)
6. $\overline{D P} \cong \overline{P B}(\mathrm{CPCTC})$

ANSWER:
Proof:
Statements (Reasons):

1. $\triangle A C D \cong \triangle C A B$ (Given)
2. $\angle A C D \cong \angle C A B$ (СРСТС)
3. $\angle D P C \cong \angle B P A($ Vert. $\angle s$ are \cong.
4. $\overline{A B} \cong \overline{C D}$ (СРСТС)
5. $\triangle A B P \cong \triangle C D P$ (AAS)
6. $\overline{D P} \cong \overline{P B}$ (CPCTC)

CCSS ARGUMENTS Write the indicated type of proof.

26. two-column

Given: \quad GKLM
Prove: $\angle G$ and $\angle K, \angle K$ and $\angle L, \angle L$ and $\angle M, \angle M$ and $\angle G$ are supplementary.
(Theorem 6.5)

SOLUTION:

Begin by listing what is known. It is given the GKLM is a parallelogram. So, opposite sides are parallel and congruent. If two parallel lines are cut by a transversal, consecutive interior angles are supplementary.

Proof:
Statements (Reasons)

1. $\square G K L M$ (Given)
2. $\overline{G K}\|\overline{M L}, \overline{G M}\| \overline{K L}$ (Opp. sides of a \quad are $\|$.)
3. $\angle G$ and $\angle K$ are supplementary, $\angle K$ and $\angle L$ are
supplementary, $\angle L$ and $\angle M$ are supplementary, and $\angle M$ and $\angle G$ are supplementary. (Cons. int. $\angle s$ are suppl.)
ANSWER:
Proof:
Statements (Reasons)
4. $\square G K L M$ (Given)
5. $\overline{G K}\|\overline{M L}, \overline{G M}\| \overline{K L}$ (Opp. sides of a $\quad \square$ are $\|$.)
6. $\angle G$ and $\angle K$ are supplementary, $\angle K$ and $\angle L$ are
supplementary, $\angle L$ and $\angle M$ are supplementary, and $\angle M$ and $\angle G$ are supplementary. (Cons. int. $\angle s$ are suppl.)
7. two-column

Given: $\square W X Y Z$
Prove: $\triangle W X Z \cong \triangle Y Z X$
(Theorem 6.8)

SOLUTION:

Begin by listing what is known. It is given the $W X Y Z$ is a parallelogram. So, opposite sides are parallel and congruent and opposite angles are congruent. This information can be used to prove $\triangle W X Z \cong \triangle Y Z X$.

Proof:
Statements (Reasons)

1. $\square W X Y Z$ (Given)
2. $\overline{W X} \cong \overline{Z Y}, \overline{W Z} \cong \overline{X Y}$ (Opp. sides of a \square are \cong.)
3. $\angle Z W X \cong \angle X Y Z$ (Opp. $\angle s$ of a \square are \cong.)
4. $\triangle W X Z \cong \triangle Y Z X$ (SAS)

ANSWER:
Proof:
Statements (Reasons)

1. $\square W X Y Z$ (Given)
2. $\overline{W X} \cong \overline{Z Y}, \overline{W Z} \cong \overline{X Y}$ (Opp. sides of a \square are \cong.)
3. $\angle Z W X \cong \angle X Y Z$ (Opp. $\angle s$ of a \square are \cong.)
4. $\triangle W X Z \cong \triangle Y Z X$ (SAS)
5. two-column

Given: $\square P Q R S$
Prove: $\overline{P Q} \cong \overline{R S}, \overline{Q R} \cong \overline{S P}$
(Theorem 6.3)

SOLUTION:

Begin by listing what is known. It is given the $G K L M$ is a parallelogram. We are proving that opposite sides are congruent but we can use the other properties of parallelograms such as opposite sides are parallel. If two parallel lines are cut by a transversal, alternate interior angles are congruent. If we can show that $\triangle Q P R \cong \triangle S R P$ then $\overline{P Q} \cong \overline{R S}, \overline{Q R} \cong \overline{S P}$ by CPCTC.

Proof:
Statements (Reasons)

1. $\square P Q R S$ (Given)
2. Draw an auxiliary segment $\overline{P R}$ and label angles $1,2,3$, and 4 as shown. (Diagonal of $P Q R S$)
3. $\overline{P Q}\|\overline{S R}, \overline{P S}\| \overline{Q R}$ (Opp. sides of a \square are $\|$.)
4. $\angle 1 \cong \angle 2$, and $\angle 3 \cong \angle 4$ (Alt. int. $\angle s$ Thm.)
5. $\overline{P R} \cong \overline{R P}$ (Refl. Prop.)
6. $\triangle Q P R \cong \triangle S R P$ (ASA)
7. $\overline{P Q} \cong \overline{R S}, \overline{Q R} \cong \overline{S P}$ (СРСТС)

ANSWER:
Proof:
Statements (Reasons)

1. $\square P Q R S$ (Given)
2. Draw an auxiliary segment $\overline{P R}$ and label angles $1,2,3$, and 4 as shown. (Diagonal of $P Q R S$)
3. $\overline{P Q}\|\overline{S R}, \overline{P S}\| \overline{Q R}$ (Opp. sides of a \square are $\|$.)
4. $\angle 1 \cong \angle 2$, and $\angle 3 \cong \angle 4$ (Alt. int. $\angle s$ Thm.)
5. $\overline{P R} \cong \overline{R P}$ (Refl. Prop.)
6. $\triangle Q P R \cong \triangle S R P$ (ASA)
7. $\overline{P Q} \cong \overline{R S}, \overline{Q R} \cong \overline{S P}$ (CPCTC)
8. paragraph

Given: $\square A C D E$ is a parallelogram.
Prove: $\overline{E C}$ bisects $\overline{A D}$
(Theorem 6.7)

SOLUTION:

Begin by listing what is known. It is given that $A C D E$ is a parallelogram. So, opposite sides are parallel and congruent. If two parallel lines are cut by a transversal, alternate interior angles are congruent. To prove that $\overline{E C}$ bisects $\overline{A D}$ and $\overline{A D}$ bisects $\overline{E C}$ we must show that $\overline{E B} \cong \overline{B C}$ and $\overline{A B} \cong \overline{B D}$. This can be done if it is shown that $\triangle E B A \cong \triangle C B D$

Proof: It is given that $A C D E$ is a parallelogram. Since opposite sides of a parallelogram are congruent, $\overline{E A} \cong \overline{D C}$. By definition of a parallelogram, $\overline{E A} \| \overline{D C} \cdot \angle A E B \cong \angle D C B$ and $\angle E A B \cong \angle C D B$. because alternate interior angles are congruent. $\triangle E B A \cong \triangle C B D$ by ASA. $\overline{E B} \cong \overline{B C}$ and $\overline{A B} \cong \overline{B D}$ by CPCTC. By the definition of segment bisector, $\overline{E C}$ bisects $\overline{A D}$ and $\overline{A D}$ bisects $\overline{E C}$.

ANSWER:
Proof: It is given that $A C D E$ is a parallelogram. Since opposite sides of a parallelogram are congruent, $\overline{E A} \cong \overline{D C}$. By definition of a parallelogram, $\overline{E A} \| \overline{D C} \cdot \angle A E B \cong \angle D C B$ and $\angle E A B \cong \angle C D B$. because alternate interior angles are congruent. $\triangle E B A \cong \triangle C B D$ by ASA. $\overline{E B} \cong \overline{B C}$ and $\overline{A B} \cong \overline{B D}$ by CPCTC. By the definition of segment bisector, $\overline{E C}$ bisects $\overline{A D}$ and $\overline{A D}$ bisects $\overline{E C}$
30. COORDINATE GEOMETRY Use the graph shown.
a. Use the Distance Formula to determine if the diagonals of JKLM bisect each other. Explain.
b. Determine whether the diagonals are congruent. Explain.
c. Use slopes to determine if the consecutive sides are perpendicular. Explain.

SOLUTION:
a. Identify the coordinates of each point using the given graph.
$K(2,5), L(-1,-1), M(-8,-1), J(-5,5)$ and $P(-3,2)$
Use the distance formula.

$$
\begin{aligned}
J P & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-(-5))^{2}+(2-5)^{2}} \\
& =\sqrt{(2)^{2}+(-3)^{2}} \\
& =\sqrt{4+9} \\
& =\sqrt{13} \\
L P & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-(-1))^{2}+(2-(-1))^{2}} \\
& =\sqrt{(-2)^{2}+(3)^{2}} \\
& =\sqrt{4+9} \\
& =\sqrt{13} \\
M P & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-(-8))^{2}+(2-(-1))^{2}} \\
& =\sqrt{(5)^{2}+(3)^{2}} \\
& =\sqrt{25+9} \\
& =\sqrt{34} \\
K P & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-2)^{2}+(2-5)^{2}} \\
& =\sqrt{(-5)^{2}+(-3)^{2}} \\
& =\sqrt{25+9} \\
& =\sqrt{34} \\
J P & =\sqrt{13}, L P=\sqrt{13}, M P=\sqrt{34}, K P=\sqrt{34} ; \text { since }
\end{aligned}
$$

$J P=L P$ and $M P=K P$, the diagonals bisect each other.
b. The diagonals are congruent if they have the same measure. Since $J P+L P \neq M P+K P, J L \neq M K$ so they are not congruent.
c. The slopes of two perpendicular lines are negative reciprocals of each other. Find the slopes of $J K$ and $J M$.

Find the slope of $\overline{J K}$ using slope formula.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-5}{2-(-5)} \\
& =0
\end{aligned}
$$

Find the slope of $\overline{J M}$ using slope formula.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-1-5}{-8-(-5)} \\
& =2
\end{aligned}
$$

The slope of $\overline{J K}=0$ and the slope of $\overline{J M}=2$. The slopes are not negative reciprocals of each other. So, the answer is "No".

ANSWER:

a. $J P=\sqrt{13}, L P=\sqrt{13}, M P=\sqrt{34}, K P=\sqrt{34}$; since
$J P=L P$ and $M P=K P$, the diagonals bisect each other.
b. No; $J P+L P \neq M P+K P$.
c. No; the slope of $\overline{J K}=0$ and the slope of $\overline{J M}=2$. The slopes are not negative reciprocals of each other.

ALGEBRA Use $\square A B C D$ to find each measure or value.

31. x

SOLUTION:

Opposite sides of a parallelogram are congruent.
So, $2 x+7=13$.
Solve for x.

$$
\begin{aligned}
2 x+7 & =13 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

ANSWER:
3
32. y

SOLUTION:

Opposite sides of a parallelogram are congruent.
So, $3 y-8=10$.
Solve for y.
$3 y-8=10$
$3 y=18$
$y=6$
ANSWER:
6
33. $m \angle A F B$

SOLUTION:

In the figure, angle $A F B$ and 49° angle form a linear pair. So, $m \angle A F B+49=180$.
$m \angle A F B=131$
ANSWER:
131
34. $m \angle D A C$

SOLUTION:

Since the vertical angles are congruent, $m \angle A F D=m \angle B F C=49$.
The sum of the measures of interior angles in a triangle is 180 .
Here, $m \angle A F D+m \angle D A F+m \angle A D F=180$.
Substitute.

$$
\begin{aligned}
49+m \angle D A F+59 & =180 \\
m \angle D A F+108 & =180 \\
m \angle D A F & =72
\end{aligned}
$$

$\angle D A F$ and $\angle D A C$ represent the same angle. So, $m \angle D A C=72$.
ANSWER:
72
35. $m \angle A C D$

SOLUTION:

Since the vertical angles are congruent, $m \angle A F D=m \angle B F C=49$.
The sum of the measures of interior angles in a triangle is 180 .
Here, $m \angle A F D+m \angle D A F+m \angle A D F=180$.
Substitute.

$$
\begin{aligned}
49+m \angle D A F+59 & =180 \\
m \angle D A F+108 & =180 \\
m \angle D A F & =72
\end{aligned}
$$

So, $m \angle D A C=72$.
By the Alternate Interior Angles Theorem, $m \angle B D C=20$.
So, $m \angle A D C=20+59=79$.
In $\triangle A D C, m \angle A D C+m \angle A C D+m \angle D A C=180$.
Substitute.

$$
\begin{aligned}
79+m \angle A C D+72 & =180 \\
m \angle A C D+151 & =180 \\
m \angle A C D & =29
\end{aligned}
$$

ANSWER:
29
36. $m \angle D A B$

SOLUTION:

The sum of the measures of interior angles in a triangle is 180 .
Here, $m \angle D A B+m \angle A B D+m \angle B D A=180$.
Substitute.

$$
\begin{aligned}
m \angle D A B+20+59 & =180 \\
m \angle D A B+79 & =180 \\
m \angle D A B & =101
\end{aligned}
$$

ANSWER:
101
37. COORDINATE GEOMETRY $\square A B C D$ has vertices $A(-3,5), B(1,2)$, and $C(3,-4)$. Determine the coordinates of vertex D if it is located in Quadrant III.

SOLUTION:

Opposite sides of a parallelogram are parallel.
Since the slope of $\overline{B C}=\frac{-4-2}{3-1}=\frac{-6}{2}$, the slope of $\overline{A D}$ must also be $\frac{-6}{2}$.
To locate vertex D, make a line from A, starting from vertex A and moving down 6 and right 2 .
The slope of $\overline{A B}$ is $\frac{5-2}{-3-1}=-\frac{3}{4}$. The slope of $\overline{D C}$ must also be $-\frac{3}{4}$. Draw a line from vertex C.
The intersection of the two lines is $(-1,-1)$. This is vertex D.

ANSWER:
$(-1,-1)$
38. MECHANICS Scissor lifts are variable elevation work platforms. In the diagram, $A B C D$ and $D E F G$ are congruent parallelograms.

a. List the angle(s) congruent to $\angle A$. Explain your reasoning.
b. List the segment(s) congruent to $\overline{B C}$. Explain your reasoning.
c. List the angle(s) supplementary to $\angle C$. Explain your reasoning.

SOLUTION:

Use the properties of parallelograms that you learned in this lesson.
a. $\angle C, \angle E, \angle G$; sample answer: $\angle C$ is congruent to $\angle A$ because opposite angles of parallelograms are congruent. $\angle E$ is congruent to $\angle A$ because the parallelograms are congruent, and $\angle G$ is congruent to $\angle E$ because opposite angles of parallelograms are congruent and congruent to $\angle A$ by the Transitive Property. b. $\overline{A D}, \overline{D E}, \overline{G F}$; sample answer: $\overline{A D}$ is congruent to $\overline{B C}$ because opposite sides of parallelograms are congruent. $\overline{D E}$ is congruent to $\overline{B C}$ because the parallelograms are congruent, and $\overline{G F}$ is congruent to $\overline{D E}$ because opposite sides of parallelograms are congruent and congruent to $\overline{B C}$ by the Transitive Property.
c. $\angle \mathrm{ABC}, \angle A D C, \angle \mathrm{E} D G, \angle \mathrm{E} F G$; sample answer: Angles $A B C$ and $A D C$ are supplementary to $\angle C$ because consecutive angles of parallelograms are supplementary. $\angle \mathrm{ED} D$ is supplementary to $\angle C$ because it is congruent to $\angle A D C$ by the Vertical angles Theorem and supplementary to $\angle C$ by substitution. $\angle \mathrm{EFF}$ is congruent to $\angle \mathrm{ED} D$ because opposite angles of parallelograms are congruent and it is supplementary to $\angle C$ by substitution.

ANSWER:

a. $\angle C, \angle E, \angle G$; sample answer: $\angle C$ is congruent to $\angle A$ because opposite angles of parallelograms are congruent. $\angle E$ is congruent to $\angle A$ because the parallelograms are congruent, and $\angle G$ is congruent to $\angle E$ because opposite angles of parallelograms are congruent and congruent to $\angle A$ by the Transitive Property.
b. $\overline{A D}, \overline{D E}, \overline{G F}$; sample answer: $\overline{A D}$ is congruent to $\overline{B C}$ because opposite sides of parallelograms are congruent. $\overline{D E}$ is congruent to $\overline{B C}$ because the parallelograms are congruent, and $\overline{G F}$ is congruent to $\overline{D E}$ because opposite sides of parallelograms are congruent and congruent to $\overline{B C}$ by the Transitive Property.
c. $\angle \mathrm{ABC}, \angle A D C, \angle \mathrm{E} D G, \angle \mathrm{E} F G$; sample answer: Angles $A B C$ and $A D C$ are supplementary to $\angle C$ because consecutive angles of parallelograms are supplementary. $\angle \mathrm{E} D G$ is supplementary to $\angle C$ because it is congruent to $\angle A D C$ by the Vertical angles Theorem and supplementary to $\angle C$ by substitution. $\angle \mathrm{EFF}$ is congruent to $\angle \mathrm{E} D G$ because opposite angles of parallelograms are congruent and it is supplementary to $\angle C$ by substitution

PROOF Write a two-column proof.

39. Given: $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$

Prove: $\triangle Y U Z \cong \triangle V X W$

SOLUTION:

Begin by listing what is known. It is given that $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$. Opposite sides and angles are congruent in parallelograms.

Given: $\square_{Y W V Z} \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$
Prove: $\triangle Y U Z \cong \triangle V X W$

Proof:
Statements (Reasons)

1. $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$ (Given)
2. $\angle Z \cong \angle W$ (Opp. $\angle s$ of a \square are \cong.)
3. $\overline{W V} \cong \overline{Z Y}$ (Opp. sides of a \square are \cong.)
4. $\angle V X W$ and $\angle Y U Z$ are rt. $\angle s$ (\perp lines form rt. $\angle s$.)
5. $\triangle V X W$ and $\triangle Y U Z$ are rt. triangles. (Def. of rt. triangles)
6. $\triangle Y U Z \cong \triangle V X W$ (HA)

ANSWER:
Given: $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$
Prove: $\triangle Y U Z \cong \triangle V X W$

Proof:
Statements (Reasons)

1. $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$ (Given)
2. $\angle Z \cong \angle W$ (Opp. $\angle s$ of a \square are \cong.
3. $\overline{W V} \cong \overline{Z Y}($ Opp. sides of a \square are \cong.)
4. $\angle V X W$ and $\angle Y U Z$ are rt. $\angle s$ (\perp lines form rt. $\angle s$.)
5. $\triangle V X W$ and $\triangle Y U Z$ are rt. triangles. (Def. of rt. triangles)
6. $\triangle Y U Z \cong \triangle V X W$ (HA)
7. MULTIPLE REPRESENTATIONS In this problem, you will explore tests for parallelograms.
a. GEOMETRIC Draw three pairs of segments that are both congruent and parallel and connect the endpoints to form quadrilaterals. Label one quadrilateral $A B C D$, one $M N O P$, and one $W X Y Z$. Measure and label the sides and angles of the quadrilaterals.
b. TABULAR Complete the table below for each quadrilateral.

Quadrilateral	Opposite Sides Congruent?	Opposite Angles Congruen?	Parallelogram
ABCD			
$M N O P$			
$W \times Y Z$			

c. VERBAL Make a conjecture about quadrilaterals with one pair of segments that are both congruent and parallel.

SOLUTION:

a. Sample answer: Draw a pair of congruent parallel segments and connect the endpoints to form a quadrilateral. This is done 3 times to form 3 quadrilaterals. Use a ruler and protractor to find the measure of each side and angle.

b. Compare the measures of each pair of opposite sides and angles. By the definition of congruence, pairs of sides or angles with equal measures are congruent.

Quadrilateral	Opposite Sides Congruen??	Opposite Angles Congruen??	Parallelogram
$A B C D$	yes	yes	yes
MNOP	yes	yes	yes
WKYZ	yes	yes	yes

c. Sample answer:

The quadrilaterals were drawn from pairs of segments that are congruent and parallel. When the measures of each side and angle were taken and recorded in the table it was discovered that each pair of opposite sides and angles is congruent. This is the definition of a parallelogram. Therefore, if a quadrilateral has a pair of sides that are congruent and parallel, then the quadrilateral is a parallelogram.

6-2 Parallelograms

ANSWER:
a. Sample answer:

b.

Quadrilateral	Opposite Sides Congruent?	Opposite Angles Congruent?	Parallelogram
$A B C D$	yes	yes	yes
MNOP	yes	yes	yes
$W X Y Z$	yes	yes	yes

c. Sample answer: If a quadrilateral has a pair of sides that are $\cong a n d \|$, then the quadrilateral is a parallelogram.
41. CHALLENGE $A B C D$ is a parallelogram with side lengths as indicated in the figure. The perimeter of $A B C D$ is 22 . Find $A B$.

SOLUTION:

We know that opposite sides of a parallelogram are congruent. So, $2 y+1=3-4 w$ and $3 x-2=x-w+1$.
The perimeter is 22 .
First solve this equation for x in terms of $w: 3 x-2=x-w+1$.

$$
\begin{aligned}
3 x-2 & =x-w+1 & & A D=B C \\
3 x-x-2 & =-w+1 & & \text { Subtract } x \text { from each side. } \\
2 x-2 & =-w+1 & & \text { Simplify } \\
2 x & =-w+3 & & \text { Add } 2 \text { to each side. } \\
x & =-\frac{1}{2} w+\frac{3}{2} & & \text { Divide each side by } 2 .
\end{aligned}
$$

Next, set up an equation for the perimeter. Since opposite sides are congruent, $A B=D C$ and $A D=B C$.

$$
\begin{aligned}
A B+D C+A D+B C & =22 & & \text { Perimeter of parallelogram } \\
D C+D C+A D+A D & =22 & & \text { Substitute. } \\
2 D C+2 A D & =22 & & \text { Simplify. } \\
2(3-4 w)+2(3 x-2) & =22 & & \text { Substitute. } \\
2(3-4 w)+2\left[3\left(-\frac{1}{2} w+\frac{3}{2}\right)-2\right] & =22 & & \text { Substitute. } \\
6-8 w+2\left[-\frac{3}{2} w+\frac{9}{2}-2\right] & =22 & & \text { Distributive Property } \\
6-8 w-3 w+9-4 & =22 & & \text { Distributive Property } \\
-11 w+11 & =22 & & \text { Combine like terms. } \\
-11 w & =11 & & \text { Subtract } 11 \text { from each side. } \\
w & =-1 & & \text { Divide each side by }-11 .
\end{aligned}
$$

Substitute $w=-1$ in $C D$.

$$
\begin{aligned}
C D & =3-4 w \\
& =3-4(-1) \\
& =3+4 \\
& =7
\end{aligned}
$$

Since the opposite sides of a parallelogram are congruent, $A B=C D=7$.
ANSWER:
7
42. WRITING IN MATH Explain why parallelograms are always quadrilaterals, but quadrilaterals are sometimes parallelograms.

SOLUTION:

A parallelogram is a polygon with four sides in which the opposite sides and angles are congruent. Quadrilaterals are defined as four-sided polygons. Since a parallelogram always has four sides, it is always a quadrilateral. A quadrilateral is only a parallelogram when the opposite sides and angles of the polygon are congruent. A quadrilateral that is also a parallelogram:

A quadrilateral that is not a parallelogram:

ANSWER:

A parallelogram is a polygon with four sides in which the opposite sides and angles are congruent. Quadrilaterals are defined as four-sided polygons. Since a parallelogram always has four sides, it is always a quadrilateral. A quadrilateral is only a parallelogram when the opposite sides and angles of the polygon are congruent.
43. OPEN ENDED Provide a counterexample to show that parallelograms are not always congruent if their corresponding sides are congruent.

SOLUTION:

Sample answer:
These parallelograms each have corresponding congruent sides but the corresponding angles are not congruent so the parallelograms are not congruent.

ANSWER:

44. CCSS REASONING Find $m \angle 1$ and $m \angle 10$ in the figure. Explain.

SOLUTION:

$\angle 10$ is supplementary to the 65 degree angle because consecutive angles in a parallelogram are supplementary, so $m \angle 10$ is $180-65$ or 115 .
$\angle 1$ is supplementary to $\angle 8$ because consecutive angles in a parallelogram are supplementary, $m \angle 8=64$ because alternate interior angles are congruent., so $m \angle 1$ is 116 .

ANSWER:
$m \angle 1=116, m \angle 10=115$; sample answer: $m \angle 8=64$ because alternate interior angles are congruent. $\angle 1$ is supplementary to $\angle 8$ because consecutive angles in a parallelogram are supplementary, so $m \angle 1$ is $116 . \angle 10$ is supplementary to the 65 degree angle because consecutive angles in a parallelogram are supplementary, so $m \angle 10$ is $180-65$ or 115.
45. WRITING IN MATH Summarize the properties of the sides, angles, and diagonals of a parallelogram.

SOLUTION:

Sample answer: In a parallelogram, the opp. sides and $\angle s$ are \cong.

Two consecutive $\angle s$ in a \square are supplementary. If one angle of $a \square$ is right, then all the angles are right.

The diagonals of a parallelogram bisect each other.

ANSWER:

Sample answer: In a parallelogram, the opp. sides and $\angle s$ are \cong.Two consecutive $\angle s$ in a_{\square} are supplementary. If one angle of $a \square$ is right, then all the angles are right. The diagonals of a parallelogram bisect each other.
46. Two consecutive angles of a parallelogram measure $3 x+42$ and $9 x-18$. What are the measures of the angles?

A 13, 167
B $58.5,31.5$
C 39, 141
D 81, 99

SOLUTION:

Consecutive angles in a parallelogram are supplementary.
So, $(3 x+42)+(9 x-18)=180$.
Solve for x.

$$
\begin{aligned}
(3 x+42)+(9 x-18) & =180 \\
12 x+24 & =180 \\
12 x & =156 \\
x & =13
\end{aligned}
$$

Substitute $x=13$ in $3 x+42$ and $9 x-18$.

$$
\begin{aligned}
3 x+42 & =3(13)+42 \\
& =39+42 \\
& =81 \\
9 x-18 & =9 x-18 \\
& =9(13)-18 \\
& =117-18 \\
& =99
\end{aligned}
$$

So, the correct option is D.
ANSWER:
D
47. GRIDDED RESPONSE Parallelogram $M N P Q$ is shown. What is the value of x ?

SOLUTION:

Consecutive angles in a parallelogram are supplementary.
So, $(6 x)+(7 x+11)=180$.
Solve for x.

$$
\begin{aligned}
(6 x)+(7 x+11) & =180 \\
13 x+11 & =180 \\
13 x & =169 \\
x & =13
\end{aligned}
$$

ANSWER:
13
48. ALGEBRA In a history class with 32 students, the ratio of girls to boys is 5 to 3 . How many more girls are there than boys?

F 2	H 12
G 8	J 15

SOLUTION:

The ratio of girls to boys is 5 to 3 . There are 5 girls in each group of 8 students. $\frac{\text { Number of girls }}{\text { total in group }}=\frac{5}{8}$ Let g be the number of girls in a history class. So, there are g girls to 32 students.
$\frac{\mathrm{g}}{32}=\frac{5}{8}$
$g=20$
Therefore, the number of boys in a class is $32-20$ or 12 .
There are 8 more girls than boys.
So, the correct option is G.
ANSWER:
G
49. SAT/ACT The table shows the heights of the tallest buildings in Kansas City, Missouri. To the nearest tenth, what is the positive difference between the median and the mean of the data?

Name	Height (m)
One Kansas City Place	193
Town Pavillion	180
Hyatt Regency	154
Power and Light Building	147
City Hall	135
1201 Walnut	130

A 5
B 6
C 7
D 8
E 10
SOLUTION:
$\begin{aligned} & \text { mean }=\frac{193+180+154+147+135+130}{6} \\ &=156.5 \\ & \text { median }=\frac{154+147}{2} \\ &=150.5\end{aligned}$
Difference $=156.5-150.5=6$
So, the correct option is B.
ANSWER:
B

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.
50. 108

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $108 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as $(n-2) 180$.

$$
\begin{aligned}
108 n & =(n-2) 180 \\
108 n & =180 n-360 \\
-72 n & =-360 \\
n & =5
\end{aligned}
$$

ANSWER:
5
51. 140

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $140 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as $(n-2) 180$.

$$
\begin{aligned}
140 n & =(n-2) 180 \\
140 n & =180 n-360 \\
-40 n & =-360 \\
n & =9
\end{aligned}
$$

ANSWER:
9
52. ≈ 147.3

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $147.3 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as $(n-2) 180$.

$$
\begin{aligned}
& 147.3 n=(n-2) 180 \\
& 147.3 n=180 n-360
\end{aligned}
$$

$$
-32.7 n=-360
$$

$$
n \approx 11
$$

So, the polygon has 11 sides.
ANSWER:
11
53. 160

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $160 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as $(n-2) 180$.

$$
160 n=(n-2) 180
$$

$$
160 n=180 n-360
$$

$$
-20 n=-360
$$

$$
n=18
$$

ANSWER:

18
54. 135

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $135 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as $(n-2) 180$.

$$
\begin{aligned}
& 135 n=(n-2) 180 \\
& 135 n=180 n-360 \\
&-45 n=-360 \\
& n=8 \\
& \text { ANSWER: } \\
& 8
\end{aligned}
$$

55. 176.4

SOLUTION:

Let n be the number of sides. Since all angles of a regular polygon are congruent, the sum of the interior angle measures is $176.4 n$. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as ($n-2$) 180 .
$176.4 n=(n-2) 180$
$176.4 n=180 n-360$

$$
\begin{aligned}
-3.6 n & =-360 \\
n & =100
\end{aligned}
$$

ANSWER:
100
56. LANDSCAPING When landscapers plant new trees, they usually brace the tree using a stake tied to the trunk of the tree. Use the SAS or SSS Inequality to explain why this is an effective method for keeping a newly planted tree perpendicular to the ground. Assume that the tree does not lean forward or backward.

SOLUTION:

By the SAS Inequality Theorem, if the tree started to lean, one of the angles of the triangle formed by the tree, the ground, and the stake would change, and the side opposite that angle would change as well. However, with one end of the long wooden stake in the ground and the other end tied to the tree, no side of the triangle can change length. Thus, no angle can change. This ensures that if the tree were perpendicular to the ground when the stake was attached, then it will remain perpendicular to the ground.

ANSWER:
By the SAS Inequality Theorem, if the tree started to lean, one of the angles of the triangle formed by the tree, the ground, and the stake would change, and the side opposite that angle would change as well. However, with the stake in the ground and fixed to the tree, no side of the triangle can change length. Thus, no angle can change. This ensures that the tree will stay perpendicular to the ground.

Determine whether the solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices.
57.

SOLUTION:

The figure has a curved surface, so it is not a polyhedron. It is a cylinder.
ANSWER:
not a polyhedron; cylinder
58.

SOLUTION:

The figure has a curved surface, so it is not a polyhedron. It is a sphere.
ANSWER:
not a polyhedron; sphere
59.

SOLUTION:

The figure has a curved surface, so it is not a polyhedron. It is a cone.
ANSWER:
not a polyhedron; cone
The vertices of a quadrilateral are $W(3,-1), X(4,2), Y(-2,3)$ and $Z(-3,0)$. Determine whether each segment is a side or diagonal of the quadrilateral, and find the slope of each segment.
60. $\overline{Y Z}$

SOLUTION:
First graph the four points.

$\overline{Y Z}$ is a side of the quadrilateral. The slope is 3.
ANSWER:
side; 3
61. $\overline{Y W}$

SOLUTION:

First graph the quadrilateral and $\overline{Y W}$.

$\overline{Y W}$ is a diagonal with slope $=-\frac{4}{5}$.
ANSWER:
diagonal; $-\frac{4}{5}$
62. $\overline{Z W}$

SOLUTION:
Graph the quadrilateral.

$\overline{Z W}$ is a side with slope $=-\frac{1}{6}$.
ANSWER:
side; $-\frac{1}{6}$

