
#### Use the figure to complete each of the following.



1. Name another point that is collinear with points U and V.

### SOLUTION:

Collinear points are points that lie on the same line. Here, the point P lies on the line UV. So, the point P is collinear with points U and V.

ANSWER: P

2. What is another name for plane *Y*?

SOLUTION:

There are three points R, S, and T marked in the plane Y. So, the plane Y can also be called plane RST.

ANSWER:

plane RST

3. Name a line that is coplanar with points P, Q, and W.

#### SOLUTION:

If a line is coplanar with points, then they should lie on the same plane. Here, the points P, Q, W and the line  $\overline{RS}$  lie on the plane X.

So, the line  $\overline{RS}$  is coplanar with points *P*, *Q*, and *W*.

ANSWER:

 $\overline{RS}$ 

#### Find the value of x and AC if B is between points A and C.

4.AB = 12, BC = 8x - 2, AC = 10x

#### SOLUTION:

Here *B* is between *A* and *C*. So, AB + BC = AC. We have AB = 12, BC = 8x - 2, AC = 10x.

#### Substitute.

| AB + BC = AC                  | Betweenness of Points. |
|-------------------------------|------------------------|
| 12 + (8x - 2) = 10x           | Subtsitution.          |
| 10 + 8x = 10x                 | Simplify.              |
| 10 + 8x - 8x = 10x - 8x       | Add 8x to each side.   |
| 10 = 2x                       | Simplify.              |
| $\frac{10}{2} = \frac{2x}{2}$ | Divide each side by 2. |
| 5 = x                         | Simplify.              |

Find AC.

# AC = 10x

= 10(5)= 50

#### ANSWER:

x = 5; AC = 50

5.AB = 5x, BC = 9x - 2, AC = 11x + 7.6

#### SOLUTION:

Here *B* is between A and *C*. So, AB + BC = AC. We have AB = 5x, BC = 9x - 2, AC = 11x + 7.6.

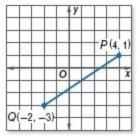
| AB + BC = AC                    | Betweenness of Points. |
|---------------------------------|------------------------|
| 5x + (9x - 2) = 11x + 7.6       | Substitution.          |
| 14x - 2 = 11x + 7.6             | Simplify.              |
| 14x - 11x - 2 = 11x - 11x + 7.6 | -11X from each side.   |
| 3x - 2 = 7.6                    | Simplify.              |
| 3x - 2 + 2 = 7.6 + 2            | Add 2 to each side.    |
| 3x = 9.6                        | Simplify.              |
| $\frac{3x}{3} = \frac{9.6}{3}$  | ÷ each side by 3.      |
| x = 3.2                         | Simplify.              |

Find AC. AC = 11x + 7.6 = 11(3.2) + 7.6= 42.8

#### ANSWER:

x = 3.2; AC = 42.8

6. Find *CD* and the coordinate of the midpoint of  $\overline{CD}$ .


#### SOLUTION:

*C* is -9, and *D* is 5. So, the distance between *C* and *D*, that is, *CD* =14. Their midpoint is  $\frac{-9+5}{2}$  or -2.

## ANSWER:

14; -2

Find the coordinates of the midpoint of each segment. Then find the length of each segment.



### SOLUTION:

7.

Use the Midpoint Formula 
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Substitute. 
$$\left(\frac{4-2}{2}, \frac{1-3}{2}\right) = (1, -1)$$

The midpoint of  $\overline{PQ}$  is (1, -1).

Use the Distance Formula.  $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

Substitute.

$$PQ = \sqrt{(-2-4)^2 + (-3-1)^2}$$
  
=  $\sqrt{(-6)^2 + (-4)^2}$   
=  $\sqrt{36+16}$   
=  $\sqrt{52}$   
=  $2\sqrt{13}$   
 $\approx 7.2$ 

The distance between P and Q is  $2\sqrt{13}$  or about 7.2 units.

#### ANSWER:

 $(1, -1); 2\sqrt{13} \approx 7.2$ 

# Mid-Chapter Quiz: Lessons 1-1 through 1-4

|   |   | J(-2,4) |   |  |  |   |   |
|---|---|---------|---|--|--|---|---|
|   |   |         |   |  |  | - |   |
| - | ł |         | 0 |  |  |   | X |
|   | L |         |   |  |  |   | + |

### SOLUTION:

8.

Use the Midpoint Formula 
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
.

Substitute.

$$\left(\frac{-2-3}{2}, \frac{4-3}{2}\right) = \left(-\frac{5}{2}, \frac{1}{2}\right)$$
  
The midpoint of  $\overline{JK}$  is  $\left(-\frac{5}{2}, \frac{1}{2}\right)$ .

Use the Distance Formula.  $JK = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

Substitute.  

$$JK = \sqrt{(-3 - (-2))^2 + (-3 - 4)^2}$$

$$= \sqrt{(-1)^2 + (-7)^2}$$

$$= \sqrt{1 + 49}$$

$$= \sqrt{50}$$

$$= 5\sqrt{2}$$

$$\approx 7.1$$

The distance between J and K is  $5\sqrt{2}$  or about 7.1 units.

## ANSWER:

$$\left(-\frac{5}{2},\frac{1}{2}\right);5\sqrt{2}\approx7.1$$

Find the coordinates of the midpoint of a segment with the given endpoints. Then find the distance between each pair of points.

9. *P*(26, 12) and *Q*(8, 42)

SOLUTION:

Use the Midpoint Formula  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Substitute.

 $\left(\frac{26+8}{26+8},\frac{12+42}{26+8}\right) = (17,27)$ 

$$\begin{pmatrix} 2 & 2 \end{pmatrix}$$
 (11,27)  
The midpoint of  $\overline{PQ}$  is (17, 27).

Use the Distance Formula.  $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

Substitute.

$$PQ = \sqrt{(8-26)^2 + (42-12)^2}$$
  
=  $\sqrt{(-18)^2 + (30)^2}$   
=  $\sqrt{324 + 900}$   
=  $\sqrt{1224}$   
 $\approx 35$ 

The distance between P and Q is  $\sqrt{1224}$  or about 35 units.

## ANSWER:

 $(17, 27); \sqrt{1224} \text{ or } 35.0$ 

10. M(6, -41) and N(-18, -27)SOLUTION: Use the Midpoint Formula  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 

Substitute.

$$\left(\frac{6-18}{2}, \frac{-41-27}{2}\right) = (-6, -34)$$

The midpoint of  $\overline{MN}$  is (-6, -34).

Use the Distance Formula.  $MN = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

$$MN = \sqrt{(-18-6)^2 + (-27 - (-41))^2}$$
  
=  $\sqrt{(-24)^2 + (14)^2}$   
=  $\sqrt{576 + 196}$   
=  $\sqrt{772}$   
 $\approx 27.8$ 

The distance between *M* and *N* is  $\sqrt{772}$  or about 27.7 units.

## ANSWER:

(−6, −34); √772 or 27.8

#### Mid-Chapter Quiz: Lessons 1-1 through 1-4

11. **MAPS** A map of a town is drawn on a coordinate grid. The high school is found at point (3, 1) and town hall is found at (-5, 7).

**a.** If the high school is at the midpoint between the town hall and the town library, at which ordered pair should you find the library?

**b.** If one unit on the grid is equivalent to 50 meters, how far is the high school from town hall?

SOLUTION:

**a.** Let (x, y) be the location of town library.

Then by the Midpoint Formula,

$$\left(\frac{x-5}{2},\frac{y+7}{2}\right) = (3,1)$$

Write two equations to find the coordinates of the library.

 $\frac{x-5}{2} = 3$ x-5 = 6x = 11

$$\frac{y+7}{2} = 1$$
$$y+7 = 2$$
$$y = -5$$

The town library is found at point (11, -5).

**b.** Use the Distance Formula.

Distance = 
$$\sqrt{(-5-3)^2 + (7-1)^2}$$
  
=  $\sqrt{(-8)^2 + (6)^2}$   
=  $\sqrt{64+36}$   
=  $\sqrt{100}$   
= 10

Each unit is equivalent to 50 meters. 10(50) = 500

So, the distance between the high school and the town hall is 500 meters.

#### ANSWER:

**a.** (11, −5) **b.** 500 m 12. MULTIPLE CHOICE The vertex of  $\angle ABC$  is located at the origin. Point *A* is located at (5, 0) and Point *C* is located at (0, 2). How can  $\angle ABC$  be classified?

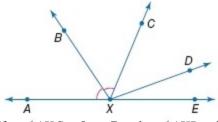
A acute

 ${\bf B}$  obtuse

C right

**D** scalene

SOLUTION:


Since the vertex is at the origin and the other two points are on the axes of the coordinate plane, the triangle is a right triangle.

The correct choice is C.

ANSWER:

С

In the figure,  $\overline{XA}$  and  $\overline{XE}$  are opposite rays, and  $\angle 4XC$  is bisected by  $\overline{XB}$ .



13. If  $m \angle AXC = 8x - 7$  and  $m \angle AXB = 3x + 10$ , find  $m \angle AXC$ .

SOLUTION: In the figure,  $m \angle AXC = m \angle AXB + m \angle BXC$ .

 $m \angle AXB = m \angle BXC$ , since  $\angle AXC$  is bisected by  $\overline{XB}$ .

 $m \angle AXC = m \angle AXB + m \angle AXB$ 

Substitute. 8x - 7 = 3x + 10 + 3x + 10 8x - 7 = 6x + 20 2x = 27x = 13.5

Substitute x = 13.5 in  $m \angle AXC$ .

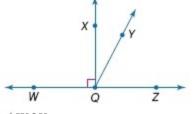
 $m \angle AXC = 8x - 7$ = 8(13.5) - 7= 101ANSWER:

101

14. If  $m \angle CXD = 4x + 6$ ,  $m \angle DXE = 3x + 1$ , and  $m \angle CXE = 8x - 2$ , find  $m \angle DXE$ .

SOLUTION:

In the figure,  $m \angle CXE = m \angle CXD + m \angle DXE$ .


Substitute. 8x - 2 = 4x + 6 + 3x + 1 8x - 2 = 7x + 7 x = 9

Substitute x = 9 in  $m \angle DXE$ .  $m \angle DXE = 3x + 1$  = 3(9) + 1= 28

ANSWER:

28

Classify each angle as *acute*, *right*, or *obtuse*.



15. ∠*WQY* 

SOLUTION:

In the figure  $\angle XQW$  is a right angle, so  $m \angle XQW = 90$ . Point *Y* on angle  $\angle WQY$  lies in the exterior angle of right angle  $\angle XQW$ , so  $\angle WQY$  is an obtuse angle.

ANSWER:

obtuse

#### 16. ∠*YQZ*

SOLUTION:

In the figure  $\angle Z QX$  is a right angle, so  $m \angle Z QX = 90$ . Point *Y* on angle  $\angle YQZ$  lies in the interior angle of right angle  $\angle Z QX$ , so  $\angle YQZ$  is an acute angle.

#### ANSWER:

acute