Mid-Chapter Quiz: Lessons 4-1 through 4-4

1. COORDINATE GEOMETRY Classify $\triangle A B C$ with vertices $A(-2,-1), B(-1,3)$, and $C(2,0)$ as scalene, equilateral, or isosceles.

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{A B}, \overline{B C}$ and $\overline{C A}$.
$\overline{A B}$ has endpoints $A(-2,-1)$ and $B(-1,3)$.

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
A B & =\sqrt{(-1-(-2))^{2}+(3-(-1))^{2}} \\
& =\sqrt{(1)^{2}+(4)^{2}} \\
& =\sqrt{1+16} \\
& =\sqrt{17}
\end{aligned}
$$

$\overline{B C}$ has endpoints $B(-1,3)$ and $C(2,0)$.
$B C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
B C & =\sqrt{(2-(-1))^{2}+(0-3)^{2}} \\
& =\sqrt{(3)^{2}+(-3)^{2}} \\
& =\sqrt{9+9} \\
& =\sqrt{18}
\end{aligned}
$$

$\overline{C A}$ has endpoints $C(2,0)$ and $A(-2,-1)$.
$C A=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
C A & =\sqrt{(-2-2)^{2}+(-1-0)^{2}} \\
& =\sqrt{(-4)^{2}+(-1)^{2}} \\
& =\sqrt{16+1} \\
& =\sqrt{17}
\end{aligned}
$$

Here, $A B=C A$. This triangle has two congruent sides. So, it is isosceles.
ANSWER:
isosceles

Mid-Chapter Quiz: Lessons 4-1 through 4-4

2. MULTIPLE CHOICE Which of the following are the measures of the sides of isosceles triangle $Q R S$?

A $17,17,15$
B $15,15,16$
C $14,15,14$
D 14, 14, 16

SOLUTION:

Here, $Q R=S R$.

$$
3 y-1=y+11
$$

$$
3 y-1-y=y+11-y
$$

$$
2 y-1=11
$$

$$
2 y-1+1=11+1
$$

$$
2 y=12
$$

$$
y=6
$$

Substitute $y=6$ in $Q R$.
$Q R=3 y-1$
$=3(6)-1$
$=18-1$
$=17$
Substitute $y=6$ in $R S$.

$$
\begin{aligned}
& R S=y+11 \\
& =6+11 \\
& =17
\end{aligned}
$$

Substitute $y=6$ in $Q S$.
$Q S=4 y-9$
$=4(6)-9$
$=24-9$
$=15$
ANSWER:
A

Mid-Chapter Quiz: Lessons 4-1 through 4-4

3. ALGEBRA Find x and the length of each side if $\Delta W X Y$ is an equilateral triangle with sides $\overline{W X}=6 x-12, \overline{X Y}=$ $2 x+10$, and $\overline{W Y}=4 x-1$.

SOLUTION:

Since $\triangle W X Y$ is equilateral, $W X=X Y=Y W$.

$$
W X=X Y
$$

$6 x-12=2 x+10$

$$
6 x-2 x-12=2 x-2 x+10
$$

$$
4 x-12=10
$$

$$
4 x-12+12=10+12
$$

$$
4 x=22
$$

$$
x=5.5
$$

Substitute $x=5.5$.
$W X=6 x-12$

$$
\begin{aligned}
& =6(5.5)-12 \\
& =33-12 \\
& =21
\end{aligned}
$$

Since all the sides are congruent, $W X=X Y=Y W=21$.
ANSWER:
$x=5.5 ; W X=X Y=W Y=21$

Find the measure of each angle indicated.

4. $m \angle 1$

SOLUTION:

In the figure, $m \angle 1+72=180$.
Solve.

$$
m \angle 1+72=180
$$

$m \angle 1+72-72=180-72$

$$
m \angle 1=108
$$

ANSWER:
108

Mid-Chapter Quiz: Lessons 4-1 through 4-4

5. $m \angle 2$

SOLUTION:

In the figure, $m \angle 1+72=180$.
Solve.

$$
\begin{aligned}
m \angle 1+72 & =180 \\
m \angle 1+72-72 & =180-72 \\
m \angle 1 & =108
\end{aligned}
$$

The sum of the measures of the angles of a triangle is 180 . In the figure, $m \angle 1+m \angle 2+38=180$.
Substitute.

$$
\begin{aligned}
108+m \angle 2+38 & =180 \\
146+m \angle 2 & =180 \\
146+m \angle 2-146 & =180-146 \\
m \angle 2 & =34
\end{aligned}
$$

ANSWER:
34
6. $m \angle 3$

SOLUTION:

The sum of the measures of the angles of a triangle is 180 . In the figure, $42+72+m \angle 3=180$. Substitute.

$$
\begin{aligned}
42+72+m \angle 3 & =180 \\
114+m \angle 3 & =180 \\
114+m \angle 3-114 & =180-114 \\
m \angle 3 & =66
\end{aligned}
$$

ANSWER:
66

Mid-Chapter Quiz: Lessons 4-1 through 4-4

7. ASTRONOMY Leo is a constellation that represents a lion. Three of the brighter stars in the constellation form $\triangle L E O$. If the angles have measures as shown in the figure, find $m \angle O L E$.

SOLUTION:

By the Exterior Angle Theorem, $93=m \angle L O E+m \angle O L E$.
Find $m \angle O L E$.

$$
\begin{aligned}
& 93=m \angle L O E+m \angle O L E \\
& 93=27+m \angle O L E \\
& 93-27=27+m \angle O L E-27 \\
& 66=m \angle O L E \\
& \text { So, } m \angle O L E=66 . \\
& \text { ANSWER: } \\
& 66
\end{aligned}
$$

Find the measure of each numbered angle.

8. $m \angle 4$

SOLUTION:

In the figure, $28+57+m \angle 4=180$.

$$
\begin{aligned}
85+m \angle 4 & =180 \\
85+m \angle 4-85 & =180-85 \\
m \angle 4 & =95
\end{aligned}
$$

ANSWER:
95
9. $m \angle 5$

SOLUTION:
By the Exterior Angle Theorem, $m \angle 5=28+57$.
Simplify.
$m \angle 5=85$
ANSWER:
85

Mid-Chapter Quiz: Lessons 4-1 through 4-4

10. $m \angle 6$

SOLUTION:

By the Exterior Angle Theorem, $m \angle 5=28+57$.
Simplify.
$m \angle 5=85$
By the Exterior Angle Theorem, $m \angle 5=m \angle 6+36$.
Substitute.
$85=m \angle 6+36$
$85-36=m \angle 6+36-36$
$49=m \angle 6$
Therefore, $m \angle 6=49$.
ANSWER:
49
11. $m \angle 7$

SOLUTION:
By the Exterior Angle Theorem, $m \angle 5=28+57$.
Simplify.
$m \angle 5=85$
In the figure, $m \angle 5+m \angle 7+42=180$.
Substitute.

$$
85+m \angle 7+42=180
$$

$$
127+m \angle 7=180
$$

$$
127+m \angle 7-127=180-127
$$

$$
m \angle 7=53
$$

ANSWER:
53

Mid-Chapter Quiz: Lessons 4-1 through 4-4

In the diagram, $\triangle R S T \cong \triangle A B C$.

12. Find x.

SOLUTION:

If two triangles are congruent then their corresponding parts are congruent.

$$
\begin{aligned}
5 x+20 & =3 x+40 \\
5 x+20-3 x & =3 x+40-3 x \\
2 x+20 & =40 \\
2 x+20-20 & =40-20 \\
2 x & =20 \\
x & =10
\end{aligned}
$$

ANSWER:

10
13. Find y.

SOLUTION:

If two triangles are congruent then their corresponding parts are congruent.

$$
\begin{aligned}
2 y-8 & =y+13 \\
2 y-8-y & =y+13-y \\
y-8 & =13 \\
y-8+8 & =13+8 \\
y & =21
\end{aligned}
$$

ANSWER:
21

Mid-Chapter Quiz: Lessons 4-1 through 4-4

14. ARCHITECTURE The diagram shows an A-frame house with various points labeled. Assume that segments and angles that appear to be congruent in the diagram are congruent. Indicate which triangles are congruent.

SOLUTION:

$\triangle B E D \cong \triangle C F G ; \triangle B J H \cong \triangle C K M ; \triangle B P N \cong \triangle C Q S ;$
$\triangle D I H \cong \triangle G L M ; \triangle D O N \cong \triangle G R S ;$
ANSWER:
$\triangle B E D \cong \triangle C F G ; \triangle B J H \cong \triangle C K M ; \triangle B P N \cong \triangle C Q S ;$
$\Delta D I H \cong \triangle G L M ; \triangle D O N \cong \triangle G R S ;$
15. MULTIPLE CHOICE Determine which statement is true given that $\triangle C B X \cong \triangle S M L$.

F $\overline{M O} \cong \overline{S L}$
G $\overline{X C} \cong \overline{M L}$
H $\angle X \cong \angle S$
J $\angle X C B \cong \angle L S M$

SOLUTION:

Test choice F . None of the vertices are labeled O . This is incorrect
Test choice G: Segment $X C$ connects the third vertex of the triangle to the first vertex. However; segment $M L$ connects the second vertex of the triangle to the third vertex. This is incorrect.
Test choice H: Angle X is the third vertex of the triangle and angle S is the first vertex. This is incorrect.
Test choice J: Angle $X C B$ represents vertex C and angle $L S M$ represents vertex S. Both of these letters are listed first in the naming the triangles. The correct answer is J.

ANSWER:
J

Mid-Chapter Quiz: Lessons 4-1 through 4-4

16. BRIDGES A bridge truss is shown in the diagram below, where $\overline{A C} \perp \overline{B D}$ and B is the midpoint of $\overline{A C}$. What method can be used to prove that $\triangle A B D \cong \triangle C B D$?

SOLUTION:

If B is the midpoint of $A C$, then segment $A B$ is equal to segment $B C$. So, those sides are congruent.
If $B D$ is perpendicular to $A C$, then angle $A B D$ is a right angle and angle $C B D$ is a right angle. So, those angles are congruent.
$B D$ is congruent to itself, so that side is also congruent.
Triangle $A B D$ and triangle $C B D$ are congruent by SAS.
ANSWER:
SAS
Determine whether $\triangle P Q R \cong \triangle X Y Z$.
17. $P(3,-5), Q(11,0), R(1,6), X(5,1), Y(13,6), Z(3,12)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{P Q}, \overline{Q R}$ and $\overline{R P}$.
$\overline{P Q}$ has endpoints $P(3,-5)$ and $Q(11,0)$.

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
P Q & =\sqrt{(11-3)^{2}+(0-(-5))^{2}} \\
& =\sqrt{(8)^{2}+(5)^{2}} \\
& =\sqrt{64+25} \\
& =\sqrt{89}
\end{aligned}
$$

$\overline{Q R}$ has endpoints $Q(11,0)$ and $R(1,6)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(1-11)^{2}+(6-0)^{2}} \\
& =\sqrt{(-10)^{2}+(6)^{2}} \\
& =\sqrt{100+36} \\
& =\sqrt{136}
\end{aligned}
$$

$\overline{R P}$ has endpoints $R(1,6)$ and $P(3,-5)$.
$R P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

Mid-Chapter Quiz: Lessons 4-1 through 4-4

$$
\begin{aligned}
R P & =\sqrt{(3-1)^{2}+(-5-6)^{2}} \\
& =\sqrt{(2)^{2}+(-11)^{2}} \\
& =\sqrt{4+121} \\
& =\sqrt{125}
\end{aligned}
$$

Similarly, find the lengths of $\overline{X Y}, \overline{Y Z}$ and $\overline{Z X}$.
$\overline{X Y}$ has endpoints $X(5,1)$ and $Y(13,6)$.
$X Y=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
X Y & =\sqrt{(13-5)^{2}+(6-1)^{2}} \\
& =\sqrt{(8)^{2}+(5)^{2}} \\
& =\sqrt{64+25} \\
& =\sqrt{89}
\end{aligned}
$$

$\overline{Y Z}$ has endpoints $Y(13,6)$ and $Z(3,12)$.
$Y Z=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Y Z & =\sqrt{(3-13)^{2}+(12-6)^{2}} \\
& =\sqrt{(-10)^{2}+(6)^{2}} \\
& =\sqrt{100+36} \\
& =\sqrt{136}
\end{aligned}
$$

$\overline{Z X}$ has endpoints $Z(3,12)$ and
$X(5,1)$.
$Z X=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Z X & =\sqrt{(5-3)^{2}+(1-12)^{2}} \\
& =\sqrt{(2)^{2}+(-11)^{2}} \\
& =\sqrt{4+121} \\
& =\sqrt{125}
\end{aligned}
$$

So, $\overline{P Q} \cong \overline{X Y}, \overline{Q R} \cong \overline{Y Z}$ and $\overline{R S} \cong \overline{Z X}$.
Each pair of corresponding sides has the same measure so they are congruent. $\triangle P Q R \cong \triangle X Y Z$ by SSS.
ANSWER:
Yes

Mid-Chapter Quiz: Lessons 4-1 through 4-4

18. $P(-3,-3), Q(-5,1), R(-2,6), X(2,-6), Y(3,3), Z(5,-1)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{P Q}, \overline{Q R}$ and $\overline{R P}$.
$\overline{P Q}$ has endpoints $P(-3,-3)$ and $Q(-5,1)$.

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Substitute.

$$
\begin{aligned}
P Q & =\sqrt{(-5-(-3))^{2}+(1-(-3))^{2}} \\
& =\sqrt{(-2)^{2}+(4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20}
\end{aligned}
$$

$\overline{Q R}$ has endpoints $Q(-5,1)$ and $R(-2,6)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(-2-(-5))^{2}+(6-1)^{2}} \\
& =\sqrt{(3)^{2}+(5)^{2}} \\
& =\sqrt{9+25} \\
& =\sqrt{34}
\end{aligned}
$$

$\overline{R P}$ has endpoints $R(-2,6)$ and $P(-3,-3)$.
$R P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
R P & =\sqrt{(-3-(-2))^{2}+(-3-6)^{2}} \\
& =\sqrt{(-1)^{2}+(-9)^{2}} \\
& =\sqrt{1+81} \\
& =\sqrt{82}
\end{aligned}
$$

Similarly, find the lengths of $\overline{X Y}, \overline{Y Z}$ and $\overline{Z X}$.
$\overline{X Y}$ has endpoints $X(2,-6)$ and $Y(3,3)$.
$X Y=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

Mid-Chapter Quiz: Lessons 4-1 through 4-4

$$
\begin{aligned}
X Y & =\sqrt{(3-2)^{2}+(3-(-6))^{2}} \\
& =\sqrt{(1)^{2}+(9)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50}
\end{aligned}
$$

$\overline{Y Z}$ has endpoints $Y(3,3)$ and $Z(5,-1)$.
$Y Z=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Y Z & =\sqrt{(5-3)^{2}+(-1-3)^{2}} \\
& =\sqrt{(2)^{2}+(-4)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20}
\end{aligned}
$$

$\overline{Z X}$ has endpoints $Z(5,-1)$ and $X(2,-6)$.
$Z X=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Z X & =\sqrt{(2-5)^{2}+(-6-(-1))^{2}} \\
& =\sqrt{(-3)^{2}+(-5)^{2}} \\
& =\sqrt{9+25} \\
& =\sqrt{34}
\end{aligned}
$$

The corresponding sides are not congruent, so the triangles are not congruent.
ANSWER:
No
19. $\mathrm{P}(8,1), \mathrm{Q}(-7,-15), \mathrm{R}(9,-6), \mathrm{X}(5,11), \mathrm{Y}(-10,-5), \mathrm{Z}(6,4)$

SOLUTION:

Use the Distance Formula to find the lengths of $\overline{P Q}, \overline{Q R}$ and $\overline{R P}$.
$\overline{P Q}$ has endpoints $P(8,1)$ and $Q(-7,-15)$.
$P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
P Q & =\sqrt{(-7-8)^{2}+(-15-1)^{2}} \\
& =\sqrt{(-15)^{2}+(-16)^{2}} \\
& =\sqrt{225+256} \\
& =\sqrt{481}
\end{aligned}
$$

Mid-Chapter Quiz: Lessons 4-1 through 4-4

$\overline{Q R}$ has endpoints $Q(-7,-15)$ and $R(9,-6)$.
$Q R=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
Q R & =\sqrt{(9-(-7))^{2}+(-6-(-15))^{2}} \\
& =\sqrt{(16)^{2}+(9)^{2}} \\
& =\sqrt{256+81} \\
& =\sqrt{337}
\end{aligned}
$$

$\overline{R P}$ has endpoints $R(9,-6)$ and $P(8,1)$.
$R P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
R P & =\sqrt{(8-9)^{2}+(1-(-6))^{2}} \\
& =\sqrt{(-1)^{2}+(7)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50}
\end{aligned}
$$

Similarly, find the lengths of $\overline{X Y}, \overline{Y Z}$ and $\overline{Z X}$.
$\overline{X Y}$ has endpoints $X(5,11)$ and $Y(-10,-5)$.
$X Y=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
X Y & =\sqrt{(-10-5)^{2}+(-5-11)^{2}} \\
& =\sqrt{(-15)^{2}+(-16)^{2}} \\
& =\sqrt{225+256} \\
& =\sqrt{481}
\end{aligned}
$$

$\overline{Y Z}$ has endpoints $Y(-10,-5)$ and $Z(6,4)$.
$Y Z=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.
$Y Z=\sqrt{(6-(-10))^{2}+(4-(-5))^{2}}$

$$
=\sqrt{(16)^{2}+(9)^{2}}
$$

$$
=\sqrt{256+81}
$$

$$
=\sqrt{337}
$$

$\overline{Z X}$ has endpoints $Z(6,4)$ and $X(5,11)$.
$Z X=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Mid-Chapter Quiz: Lessons 4-1 through 4-4

Substitute.

$$
\begin{aligned}
Z X & =\sqrt{(5-6)^{2}+(11-4)^{2}} \\
& =\sqrt{(-1)^{2}+(7)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50}
\end{aligned}
$$

So, $\overline{P Q} \cong \overline{X Y}, \overline{Q R} \cong \overline{Y Z}$ and $\overline{R S} \cong \overline{Z X}$.
Each pair of corresponding sides has the same measure so they are congruent. $\triangle P Q R \cong \triangle X Y Z$ by SSS.
ANSWER:
Yes

Write a two-column proof.

20. Given: $\triangle L M N$ is isosceles with $\overline{L M} \cong \overline{N M}$, and $\overline{M O}$ bisects $\angle L M N$.

Prove: $\triangle M L O \cong \triangle M N O$

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove. Here you are given the triangle is isosceles and one segment is an angle bisector. So, you have two congruent sides and two congruent angles. Use what you have learned about triangle congruency to prove the triangles are congruent. Statements (Reasons)

1. $\triangle L M N$ is isos. with $\overline{L M} \cong \overline{N M}$. (Given)
2. $\overline{M O}$ bisects $\angle L M N$ (Given)
3. $\angle 1 \cong \angle 2$ (Defn. of \angle bisector)
4. $\overline{M O} \cong \overline{M O}$ (Refl. Prop.)
5. $\triangle M L O \cong \triangle M N O$ (SAS)

ANSWER:
Statements (Reasons)

1. $\triangle L M N$ is isos. with $\overline{L M} \cong \overline{N M}$. (Given)
2. $\overline{M O}$ bisects $\angle L M N$ (Given)
3. $\angle 1 \cong \angle 2$ (Defn. of \angle bisector)
4. $\overline{M O} \cong \overline{M O}$ (Refl. Prop.)
5. $\triangle M L O \cong \triangle M N O$ (SAS)
