Practice Test - Chapter 4

Classify each triangle as acute, equiangular, obtuse, or right.

1. $\triangle A B D$

SOLUTION:
Since $\triangle A B D$ has three congruent sides, it has three congruent angles. Therefore it is equiangular (and equilateral).
ANSWER:
equiangular
2. $\triangle A B C$

SOLUTION:
$\triangle A B C$ is a right triangle, since $m \angle A B C=90$.
ANSWER:
right
3. $\triangle B D C$

SOLUTION:
$\triangle B D C$ is obtuse, since $m \angle B D C>90$.
ANSWER:
obtuse

Practice Test - Chapter 4

Find the measure of each numbered angle.

4. $\angle 1$

SOLUTION:

Here, $\angle 1$ and 125° form a linear pair. So, $m \angle 1+125=180$.
Solve for $m \angle 1$.

$$
\begin{aligned}
m \angle 1+125-125 & =180-125 \\
m \angle 1 & =55
\end{aligned}
$$

ANSWER:
55
5. $\angle 2$

SOLUTION:

Here, $\angle 1$ and 125° angle form a linear pair. So, $m \angle 1+125=180$.
Solve for $m \angle 1$.

$$
\begin{aligned}
m \angle 1+125-125 & =180-125 \\
m \angle 1 & =55
\end{aligned}
$$

By the Exterior Angle Theorem, $m \angle 2+32=m \angle 1$.
Substitute $m \angle 1=55$.
$m \angle 2+32=55$
$m \angle 2+32-32=55-32$

$$
m \angle 2=23
$$

ANSWER:
23

Practice Test - Chapter 4

6. $\angle 3$

SOLUTION:

By the Exterior Angle Theorem, $62+m \angle 3=125$.
Solve for $m \angle 3$.
$62+m \angle 3-62=125-62$

$$
m \angle 3=63
$$

ANSWER:
63
7. $\angle 4$

SOLUTION:
By the Vertical Angle Theorem, $m \angle 4=125$
ANSWER:
125
In the diagram, $\triangle R S T \cong \triangle X Y Z$.

8. Find x.

SOLUTION:

By CPCTC, $\overline{R T} \cong \overline{Z X}$. Since $\overline{R T} \cong \overline{Z X}, R T=Z X$. Substitute.

$$
\begin{aligned}
x+21 & =2 x-14 \\
x+21-2 x & =2 x-14-2 x \\
-x+21 & =-14 \\
-x+21-21 & =-14-21 \\
-x & =-35 \\
x & =35
\end{aligned}
$$

ANSWER:
35

Practice Test - Chapter 4

9. Find y.

SOLUTION:

By CPCTC, $\angle R \cong \angle X$. Since $\angle R \cong \angle X, m \angle R=m \angle X$.
Substitute.

$$
\begin{aligned}
4 y-10 & =3 y+5 \\
4 y-10-3 y & =3 y+5-3 y \\
y-10 & =5 \\
y-10+10 & =5+10 \\
y & =15
\end{aligned}
$$

ANSWER:
15

Practice Test - Chapter 4

10. PROOF Write a flow proof.

Given: $\overline{X Y} \| \overline{W Z}$ and $\overline{X W} \| \overline{Y Z}$
Prove: $\triangle X W Z \cong \triangle Z Y X$

SOLUTION:

Given segment $X Y$ is parallel to segment $W Z$ yields angle 2 is congruent to angle 4.
Given segment $X W$ is parallel to segment $Y Z$ yields angle 1 is congruent to angle 3.
By the Reflexive Property segment $X Z$ is congruent to itself.
Triangle $X W Z$ is congruent to triangle $Z Y X$ by the Angle-Side-Angle Postulate.
Proof:

ANSWER:
Proof:

11. MULTIPLE CHOICE Find x.

A 36
B 32
C 28
D 22

Practice Test - Chapter 4

SOLUTION:

The given two triangles are isosceles. First, find the measures of the base angles of the triangles. Let a and b be the measures of the base angle of the first triangle and second triangle respectively. The base angles are congruent in each triangle, since they are isosceles.

Consider the first triangle.
$a+a+116=180$
Solve for a.
$2 a+116=180$
$2 a+116-116=180-116$
$2 a=64$
$a=32$

Here, angle b is supplementary to a $32+72$ or 104 degree angle. So, $b+104=180$.
Solve for b.

$$
\begin{aligned}
b+104-104 & =180-104 \\
b & =76
\end{aligned}
$$

Now, consider the second triangle. $76+76+x=180$.
Solve for x.

$$
\begin{aligned}
152+x & =180 \\
152+x-152 & =180-152 \\
x & =28
\end{aligned}
$$

So, the correct option is C.
ANSWER:
C
12. Determine whether $\triangle T J D \cong \triangle S E K$ given $T(-4,-2), J(0,5), D(1,-1), S(-1,3), E(3,10)$, and $K(4,4)$. Explain.

SOLUTION:
Use the Distance Formula to find the lengths of $\overline{T J}, \overline{J D}$ and $\overline{D T}$. $\overline{T J}$

Practice Test - Chapter 4

has endpoints $T(-4,-2)$ and $J(0,5)$.
$T J=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
T J & =\sqrt{(0-(-4))^{2}+(5-(-2))^{2}} \\
& =\sqrt{(4)^{2}+(7)^{2}} \\
& =\sqrt{16+49} \\
& =\sqrt{65}
\end{aligned}
$$

\bar{J} has endpoints $J(0,5)$ and $D(1,-1)$.
$J D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
J D & =\sqrt{(1-0)^{2}+(-1-5)^{2}} \\
& =\sqrt{(1)^{2}+(-6)^{2}} \\
& =\sqrt{1+36} \\
& =\sqrt{37}
\end{aligned}
$$

$\overline{D T}$ has endpoints $D(1,-1)$ and $T(-4,-2)$.
$D T=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
D T & =\sqrt{(-4-1)^{2}+(-2-(-1))^{2}} \\
& =\sqrt{(-5)^{2}+(-1)^{2}} \\
& =\sqrt{25+1} \\
& =\sqrt{26}
\end{aligned}
$$

Similarly, find the lengths of $\overline{S E}, \overline{E K}$ and $\overline{K S}$.
$\overline{S E}$ has endpoints $S(-1,3)$ and $E(3,10)$.
$S E=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
S E & =\sqrt{(3-(-1))^{2}+(10-3)^{2}} \\
& =\sqrt{(4)^{2}+(7)^{2}} \\
& =\sqrt{16+49} \\
& =\sqrt{65}
\end{aligned}
$$

$\overline{E K}$ has endpoints $E(3,10)$ and $K(4,4)$.
$E K=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

Practice Test - Chapter 4

$$
\begin{aligned}
E K & =\sqrt{(4-3)^{2}+(4-10)^{2}} \\
& =\sqrt{(1)^{2}+(-6)^{2}} \\
& =\sqrt{1+36} \\
& =\sqrt{37}
\end{aligned}
$$

$\overline{K S}$ has endpoints $K(4,4)$ and $S(-1,3)$.
$K S=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Substitute.

$$
\begin{aligned}
K S & =\sqrt{(-1-4)^{2}+(3-4)^{2}} \\
& =\sqrt{(-5)^{2}+(-1)^{2}} \\
& =\sqrt{25+1} \\
& =\sqrt{26}
\end{aligned}
$$

So, $\overline{T J} \cong \overline{S E}, \overline{J D} \cong \overline{E K}$ and $\overline{D T} \cong \overline{K S}$.
Each pair of corresponding sides has the same measure so they are congruent. $\triangle T J D \cong \triangle S E K$ by SSS.
ANSWER:
Yes, by SSS.
Determine which postulate or theorem can be used to prove each pair of triangles congruent. If it is not possible to prove them congruent, write not possible.
13.

SOLUTION:

Two consecutive angles are congruent and the two triangles have a side in common. The AAS postulate proves these two triangles congruent.

ANSWER:
AAS

Practice Test - Chapter 4

14.

SOLUTION:

The triangles have two sides marked congruent and share a third side. The SSS postulate proves these two triangles congruent.

ANSWER:
SSS
15.

SOLUTION:

The triangles share one side. So, that side is congruent, but that is not enough information to prove the triangles congruent. It is not possible to prove them congruent.

ANSWER:
not possible
16.

SOLUTION:

The two triangles share a side in common. They also have another side marked as congruent. The included angle is also marked as congruent. The SAS postulate proves these two triangles congruent.

ANSWER:
SAS

Practice Test - Chapter 4

17. LANDSCAPING Angie has laid out a design for a garden consisting of two triangular areas as shown below. The points are $A(0,0), B(0,5), C(3,5), D(6,5)$, and $E(6,0)$. Name the type of congruence transformation for the preimage $\triangle A B C$ to $\triangle E D C$.

SOLUTION:

Reflection; Each point of the preimage and its image are the same distance from the line of reflection.

ANSWER:
Reflection

Find the measure of each numbered angle.

18. $\angle 1$

SOLUTION:

The triangle formed by the angles 1,3 , and 66° has two congruent sides. Therefore, it is isosceles. Since it is isosceles, the base angles are congruent.
$m \angle 1=66$
ANSWER:
66

Practice Test - Chapter 4

19. $\angle 2$

SOLUTION:

The triangle formed by the angles 1,3 , and 66° has two congruent sides. Therefore, it is isosceles. Since it is isosceles, the base angles are congruent.
$m \angle 1=66$
Also, $m \angle 1+m \angle 3+66=180$.
Substitute.

$$
\begin{aligned}
66+m \angle 3+66 & =180 \\
132+m \angle 3 & =180 \\
132+m \angle 3-132 & =180-132 \\
m \angle 3 & =48
\end{aligned}
$$

By the Exterior Angle Theorem, $24+m \angle 2=m \angle 3$.
Substitute.

$$
\begin{aligned}
24+m \angle 2 & =48 \\
24+m \angle 2-24 & =48-24 \\
m \angle 2 & =24
\end{aligned}
$$

ANSWER:
24

Practice Test - Chapter 4

20. PROOF $\triangle A B C$ is a right isosceles triangle with hypotenuse $\overline{A B} . M$ is the midpoint of $\overline{A B}$. Write a coordinate proof to show that $\overline{C M}$ is perpendicular to $\overline{A B}$.

SOLUTION:

You need to walk through the proof step by step. Look over what you are given and what you need to prove.
The first step is to place a triangle on the coordinate grid and label the coordinates of each vertex. Place vertex A at $(0,0)$. Here, you are given that segment $A B$ is the hypotenuse, then let the hypotenuse run along the x-axis. Then point B will be on $(2 a, 0)$. The midpoint of the hypotenuse, or segment $A B$, is M at $(a, 0)$. The third vertex of the triangle will be above point M at $C(a, 2 b)$. This triangle has a right angle at C. Use what you know about slopes to walk through the proof and prove that line segment $C M$ is perpendicular to line segment $A B$. Sample answer:

The midpoint of $\overline{A B}$ is $(a, 0)$. The slope of $\overline{C M}$ is undefined, so $\overline{C M}$ is a vertical line. The slope of $\overline{A B}$ is 0 , so it is horizontal. Therefore, $\overline{A B} \perp \overline{C M}$.

ANSWER:

Sample answer:

The midpoint of $\overline{A B}$ is $(a, 0)$. The slope of $\overline{C M}$ is undefined, so $\overline{C M}$ is a vertical line. The slope of $\overline{A B}$ is 0 , so it is horizontal. Therefore, $\overline{A B} \perp \overline{C M}$.

