Find the sum of the measures of the interior angles of each convex polygon.

1. hexagon

SOLUTION:

A hexagon has six sides. Use the Polygon Interior Angles Sum Theorem to find the sum of its interior angle measures.

Substitute n = 6 in (n - 2)180. (n - 2)180 = (6 - 2)180 $= 4 \cdot 180$ = 720

ANSWER:

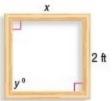
720

2.16-gon

SOLUTION:

A 16-gon has sixteen sides. Use the Polygon Interior Angles Sum Theorem to find the sum of its interior angle measures.

Substitute n = 16 in (n - 2)180. (n - 2)180 = (16 - 2)180 $= 14 \cdot 180$ = 2520


ANSWER:

2520

3. **ART** Jen is making a frame to stretch a canvas over for a painting. She nailed four pieces of wood together at what she believes will be the four vertices of a square.

a. How can she be sure that the canvas will be a square?

b. If the canvas has the dimensions shown below, what are the missing measures?

SOLUTION:

a. Sample answer: A quadrilateral is a square if it has diagonals that are congruent and perpendicular or all sides are congruent with 4 right angles. She should measure the angles at the vertices to see if they are 90 or she can check to see if the diagonals are congruent and perpendicular.

b. Each side of a square have the same measure so x = 2 ft. Each angle of a square is a right angle so y = 90.

ANSWER:

a. Sample answer: She should measure the angles at the vertices to see if they are 90 or she can check to see if the diagonals are congruent and perpendicular.

b. x = 2 ft, y = 90

Quadrilateral ABCD is an isosceles trapezoid.

4. Which angle is congruent to $\angle C$?

SOLUTION:

The base angles of an isosceles triangle are congruent so $\angle D$ is congruent to $\angle C$.

ANSWER:

∠D

5. Which side is parallel to \overline{AB} ?

SOLUTION:

The bases of a trapezoid are parallel so \overline{DC} is parallel to \overline{AB} .

ANSWER:

 \overline{DC}

6. Which segment is congruent to \overline{AC} ?

SOLUTION:

The diagonals of an isosceles trapezoid are congruent so \overline{BD} is congruent to \overline{AC} .

ANSWER:

 \overline{BD}

The measure of the interior angles of a regular polygon is given. Find the number of sides in the polygon. 7. 900

SOLUTION:

Let *n* be the number of sides in the polygon. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as (n-2)180.

```
900 = (n - 2)180

900 = 180n - 360

180n = 1260

n = 7
```

ANSWER:

8.1980

SOLUTION:

Let *n* be the number of sides in the polygon. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as (n-2)180.

1980 = (n - 2)1801980 = 180n - 360180n = 2340n = 13

ANSWER:

13

9.2880

SOLUTION:

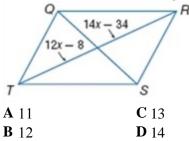
Let *n* be the number of sides in the polygon. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as (n-2)180.

2880 = (n - 2)1802880 = 180n - 360180n = 3240n = 18

ANSWER:

18

10.5400


SOLUTION:

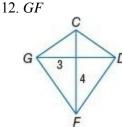
Let *n* be the number of sides in the polygon. By the Polygon Interior Angles Sum Theorem, the sum of the interior angle measures can also be expressed as (n-2)180.

5400 = (n-2)180 5400 = 180n - 360 180n = 5760n = 32

ANSWER:

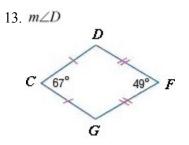
11. **MULTIPLE CHOICE** If *QRST* is a parallelogram, what is the value of *x*?

SOLUTION:


Diagonals of a parallelogram bisect each other. So, 14x - 34 = 12x - 8. Solve for x. 14x - 34 = 12x - 82x - 34 = -82x = 26x = 13Diag. bisect each other. Subtract 12x from each side. Divide each side by 2.

So, the correct option is C.

ANSWER:

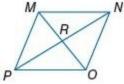

С

If *CDFG* is a kite, find each measure.

SOLUTION: Use the Pythagorean Theorem. $GF^2 = 3^2 + 4^2$ $GF = \pm \sqrt{9+16}$ $GF = \pm 5$ Since the length must be positive, GF = 5.

ANSWER:

SOLUTION:


Since a kite can only have one pair of opposite congruent angles and $\angle C \not\cong \angle F$, so $\angle D \cong \angle G$. Let *x* be the measure of angle *D*. The sum of the measures of the angles of a quadrilateral is 360.

 $m \angle C + m \angle D + m \angle F + m \angle G = 360$ 67 + x + 49 + x = 360 2x + 116 = 360 2x = 244 x = 122So, $m \angle D = m \angle G = 122$.

ANSWER:

```
122
```

ALGEBRA Quadrilateral MNOP is a rhombus. Find each value or measure.


```
14. m∠MRN
```

```
SOLUTION:
```

Since the diagonals of a rhombus are perpendicular, $m \angle MRN = 90$ by the definition of perpendicular lines.

ANSWER:

90

15. If *PR* = 12, find *RN*.

SOLUTION: In a rhombus, diagonals bisect each other. So, RN = PN = 12.

ANSWER:

16. If $m \angle PON = 124$, find $m \angle POM$.

SOLUTION:

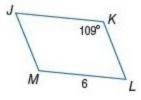
Since MNOP is a rhombus, diagonal \overline{OM} bisects $\angle PON$. Therefore, $m \angle POM = \frac{1}{2}m \angle PON$.

$$m \angle POM = \frac{1}{2}m \angle PON$$
$$= \frac{1}{2}(124)$$
$$= 62$$

ANSWER:

62

17. **CONSTRUCTION** The Smiths are building an addition to their house. Mrs. Smith is cutting an opening for a new window. If she measures to see that the opposite sides are congruent and that the diagonal measures are congruent, can Mrs. Smith be sure that the window opening is rectangular? Explain.


SOLUTION:

Sample answer: Yes, that is enough to show that the opening is a rectangle. Since each pair of opposite sides are the same length, the opening is a parallelogram. By Theorem 6.14, if the diagonals of a parallelogram are congruent then it is a rectangle.

ANSWER:

Sample answer: Yes. If it is a rectangle, the diagonals are congruent.

Use *IKLM* to find each measure.

SOLUTION:

Opposite angles of a parallelogram are congruent. So, $m \angle JML = 109$.

ANSWER: 109

19. *JK*

```
SOLUTION:
```

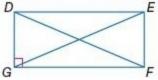
Opposite sides of a parallelogram are congruent. So, JK = 6.

ANSWER:

20. m∠KLM

```
SOLUTION:
```

Consecutive angles in a parallelogram are supplementary.


So, $m \angle KLM + 109 = 180$.

 $m \angle KLM = 71$

ANSWER:

71

ALGEBRA Quadrilateral DEFG is a rectangle.

21. If DF = 2(x + 5) - 7 and EG = 3(x - 2), find EG.

SOLUTION:

The diagonals of a rectangle are congruent to each other. So, FD = EG. 2(x+5)-7=3(x-2) 2x+10-7=3x-6 -x+3=-6 -x=-9 x=9Use the value of x to find EG. EG = 3(9-2) = 21

ANSWER:

21

22. If $m \angle EDF = 5x - 3$ and $m \angle DFG = 3x + 7$, find $m \angle EDF$.

SOLUTION: $m \angle EDF = m \angle DFG$. 5x - 3 = 3x + 7 2x = 10x = 5

Substitute x = 5 in $m \angle EDF$.

 $m \angle EDF = 5(5) - 3$ = 25 - 3= 22

ANSWER: 22

23. If DE = 14 + 2x and GF = 4(x - 3) + 6, find *GF*.

SOLUTION:

Opposite sides of a rectangle are congruent. DE = GF14 + 2x = 4(x - 3) + 6Substitute. 14 + 2x = 4x - 12 + 6**Distributive Property** 14 + 2x = 4x - 6Simplify. 14 - 2x = -6Subtract 4x from each side. -2x = -20Subtract 14 from each side. 2x = 20Divide each side by -1. x = 10Divide each side by 2.

Use the value of *x* to find *GF*.

GF = 4(x-3) + 6	Original equation
=4(10 - 3) + 6	Substitute.
=4(7)+6	Subtract.
= 34	Simplify.
=4(7)+6	Subtract.

ANSWER:

```
34
```

Determine whether each quadrilateral is a parallelogram. Justify your answer.

24.

SOLUTION:

Each pair of opposite angles are congruent. By Theorem 6.10 if both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. No other information is needed to determine that the figure is a parallelogram.

ANSWER:

Yes, opposite angles are congruent.

25

SOLUTION:

There are 2 pairs of consecutive angles that are congruent. Since opposite sides are not congruent, this fails Theorem 6.9. If both pairs of opposite sides are congruent, the quadrilateral is a parallelogram. This is not a parallelogram.

ANSWER:

No, opposite sides are not congruent.